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A solution to the Equichordal Point Problem 37.4 Algebraic curves associated with other components : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 477.5 A problem concerning the genus of a component : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 477.6 Classi�cation of parabolic components : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 487.7 The hyperbolic case : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 497.8 A summary of results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 518 Absence of algebraic solutions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 519 Numerical results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5310 Calculation of the expansion of f : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54AppendixA Theorems of Fatou and Riesz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56B The classi�cation of projective curves : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56C Remarks on general algebraic relations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 571. Introduction1.1. An informal formulation of the problemThe Equichordal Point Problem was posed by Fujiwara in 1916 [6] and probably independently by Blaschke,Rothe and Weitzenb�ock in 1917 [1]. It can be formulated in simple geometric terms. The following informalde�nition reects the spirit of what has been understood to be the Equichordal Point Problem:Let us consider a curve C and a point O inside it. This point is called equichordal if every chord of Cthrough this point has the same length. Is there a curve for which two equichordal points exist?However, upon a careful study of this formulation we observe certain ambiguities, especially dealing with theclass of curves for which the problem is posed. The most common class of curves for which the interpretationof the problem is not an issue is the class of convex curves. The original formulation of Fujiwara [6] includedthe assumption of convexity. However, we will solve the problem in a more general setting.1.2. General notationsThe ball of radius r centered at x will be denoted by B(x; r), regardless of the metric; it will be clear from thecontext which metric is meant. The notation PQ will always mean the straight line passing through P andQ. The one-dimensional projective space is denoted by P1. In most cases the notation P1 can apply to boththe complex and real projective space, but the notation P1(C ) will be used when this distinction becomesimportant. The Riemann sphere is denoted by P1(C ) or P1 if the complex character follows from the context.By [P;Q] or PQ we will denote a segment of an a�ne space connecting two points P and Q. Thus[P;Q] = ftP +(1� t)Q : t 2 [0; 1]g. We will also use the notation [P;Q[ for [P;Q]nQ, ]P;Q] for [P;Q]nP and]P;Q[ for [P;Q]nfP;Qg. The vector from P to Q will be denoted by Q� P . The distance between P and Qwill be denoted by jPQj or jQ� P j.Further notations are standard in complex analysis. Thus C � = C nf0g denotes the punctured complexplane and D denotes the unit disk fz 2 C : jzj < 1g.When � denotes a constant and f is a map de�ned on C or R then we will write f � � for the mapz 7! f(�z).1.3. A precise formulation of the problemWe will adopt several de�nitions which will make a precise formulation of the problem and our result possible.A set S � R2 is called star-like with respect to a point O 2 S i� for every P 2 S we have [O;P ] � S. AJordan curve C on the plane is called star-like with respect to the point O if the bounded component of theset R2nC is a star-like set with respect to O. Let C be a Jordan curve on the plane. A segment [P;Q] is calleda chord of the curve C i� P;Q 2 C. C will be called strongly star-like with respect to O if every straigth



4 Marek Rychlikline passing through O intersects C at exactly two points. It is easy to see that if C is strongly star-like withrespect to O then it is star-like.De�nition 1. Let C be a Jordan curve and let O be a point inside the bounded component of R2nC. Thepoint O is called equichordal if every two chords through this point have the same length.We note that if O is an equichordal point then the curve is automatically strongly star-like with respect to O.Indeed, if some straight line passing through O intersects C at three distinct points P , Q, R then the threechords [P;Q], [Q;R] and [P;R] do not have the same length.We are ready to give a new formulation of the Equichordal Point Problem.Problem 1. (The Equichordal Point Problem for strongly star-like curves) Does there exist a Jordan curveC for which there exist two distinct points O1 and O2 in the bounded component of the complement R2nC withthe property that C is strongly-starlike with respect to O1 and O2 and such that O1 and O2 are equichordalpoints of C?The use of the star-like property is actually unnecessary, as the above discussion shows, if we agree that thisproperty is implied by the equichordal property of a point. However, this formulation may be preferred toavoid ambiguities.Of course, if C is a convex curve then C is star-like with respect to each point in the bounded componentof R2nC.1.4. The main resultWe will solve a somewhat generalized equichordal problem. Let us consider two points O1 and O2 on the planeof distance a from each other. Let B(Oi; 1), i = 1; 2, denote a unit open disk about Oi. Let Ti : B(Oi; 1)!B(Oi; 1) be the map de�ned by the requirement that for every X 2 B(Oi; 1) the distance between X andT (X) be equal to 1 and that Oi 2 [X;T (X)].De�nition 2. (Generalized equichordal curve) Let O1 and O2 be two distinct points of the plane. A planarJordan curve C with the following properties:1. C � B(O1; 1) \B(O2; 1);2. Ti(C) � C for i = 1; 2.will be called a generalized equichordal curve.The main result of this paper is formulated in the following theorem:Theorem 1. There is no generalized equichordal curve.This statement implies the solution to the Equichordal Point Problem in the negative for convex and star-likecurves. Indeed, we may assume that every chord through either O1 or O2 has length 1. It is not a restriction,as it is easy to see that the chord through both O1 and O2 is common to the two families of chords; thusboth families of chords have the same length; we may scale our curve so that the length of each chord throughO1 or O2 is equal to 1. Thus, any convex or star-like curve with two equichordal points would satisfy theassumptions of Theorem 1.In section 4 we prove that any generalized equichordal curve is strongly star-like with respect to O1 andO2 (Theorem 5). This result is independent of the proof of the main theorem.1.5. Preliminary remarks on the proof of the main resultThe proof of the main result (Theorem 1) involves a detailed study of heteroclinic connections (section 5).A heteroclinic connection is an invariant curve connecting two �xed points of a map. In our case, the mapis T = T1 � T2. It will be shown (Theorem 2) that an equichordal curve, if it existed, would form such aconnection.



A solution to the Equichordal Point Problem 5It is important that the map T is algebraic, i.e. given by solutions of polynomial equations. We alsocomplexify the map T . In the complex domain an algebraic map typically becomes multivalued, and so doesT . The main idea of the proof is to consider a Riemann surface associated with the heteroclinic connection.It proves that such a surface would have to be compact. As a consequence, the equichordal curve would be analgebraic curve. The �nal rather straightforward result (Theorem 12) shows that the map T does not admitan invariant algebraic curve.The method of the proof of the main result sets up a framework for problems involving heteroclinic (orhomoclinic) connections.1.6. Prior results and related problemsThe Equichordal Point Problem appeared in the book [3], p. 9. A brief history of partial results is includedthere. Also, R. Sch�afke and H. Volkmer in [14] proved the non-existence of equichordal curves for smallexcentricities (for a de�nition, see below). It is an important partial result which may lead to a computer-assisted solution of the problem. The paper by Michelacci and Volci�c [13] gives estimates of the excentricityfor which equichordal curves could exist from above.In the book [3] there is a generalization of the Equichordal Point Problem proposed by R. Gardner. Weconsider a point O inside a Jordan curve with the property that for any chord [X;Y ] of the curve passingthrough O the parts of the chord satisfy the following equation (here � is a �xed real number):jX �Oj� + jO � Y j� = c(1)where c is a constant not depending on the chord. We ask about curves with two distinct points with thisproperty. For � = 1 we obtain the Equichordal Point Problem, and for � = �1 we obtain the equireciprocalproblem considered by Klee [11, 5]. It proves that an ellipse solves the equireciprocal problem. However,many solutions of low smoothness also exist, as it was shown in [5], due to the lack of hyperbolicity of the�xed points. Our solution to the Equichordal Point Problem should generalize to some rational values of �. Apreliminary examination of the arguments given in this paper shows that there are no solutions of the aboveproblem for rational � close to 1.The de�nition of an equichordal point extends naturally to convex bodies in many dimensions. Ournegative solution in two dimensions implies a negative solution in all dimensions since some two-dimensionalsections of convex bodies with two equichordal points would be equichordal curves.1.7. Conventions and notationsThroughout the paper we denote the potential equichordal curve by C. We �x points O1 and O2. Theywill be the potential candidates for the two equichordal points. The distance between them is denoted by a.Sometimes it is called the excentricity of C.We will assume that every chord through either O1 or O2 has length 1. Let O = 12 (O1+O2) be the centerof the segment O1O2.We will use Cartesian coordinates on the plane. It will be convenient to assume that O1 = (�a=2; 0) andO2 = (a=2; 0). Thus O will coincide with the origin. By A1 and A2 we denote the two points on the lineO1O2 which are distant by 1=2 from O. We assume that Oi 2 [Ai; O] for i = 1; 2. In Cartesian coordinates,A1 = (�1=2; 0) and A2 = (1=2; 0). We will see that if C exists then it intersects the line O1O2 at A1 and A2.For convenience we also de�ne � = 1=a and b = a=2. Thus, a 2 ]0; 1[, b 2 ]0; 1=2[ and � 2 ]1;1[.2. The equichordal maps2.1. The de�nition of the mapsMany basic facts about our problem follow from the existence of two dynamical systems (maps de�ned onsubsets of the plane) for which the equichordal curve would be invariant. In this section we de�ne the maps



6 Marek Rychlikand use basic dynamical systems theory in order to establish the connection between the invariant manifoldtheory and the Equichordal Point Problem. Finally, using this connection we prove a number of well-knownresults about the symmetries of the equichordal curve, should there exist one.In the remainder of this section O1, O2 are two �xed points of R2 . Also jO1�O2j = a is �xed. In addition,when making use of coordinates, it will be assumed that O1 = (�a=2; 0) and O2 = (a=2; 0).In order to de�ne our maps, we consider a point P on the plane. Let us assume that jPO2j < 1. Let Q bethe unique point such that jPQj = 1 and O2 2 [P;Q]. If jQO1j < 1 then we de�ne R to be the unique pointsuch that jQRj = 1 and O1 2 [Q;R]. The map T2 : P 7! Q. In a similar fashion we de�ne T1 : Q 7! R. Thus,Ti : B(Oi; 1)! B(Oi; 1); for i = 1; 2:See Figure 1. The composition of the two maps will be denoted by T . Thus T = T1 � T2. The domain
O1 O O2

R P
P 0 Q

Q0

Fig. 1. Points used in de�ning various mapsof T is the maximal set on which the composition is de�ned. One can easily see that the domain of T isT�12 (B(O1; 1) \B(O2; 1)).Let Q0 be the point symmetric to Q with respect to O. We introduce the map G : Q 7! Q0. The map Uis the composition of G and T2: U = G � T2. Clearly,U : B(O2; 1)! B(O1; 1):Lemma 1. 1 The equality T = U2 (i.e. T = U � U) holds on the domain of T .Proof. See Figure 1. We have U2 = (G � T2) � (G � T2) = (G � T2 �G) � T2:We claim that G � T2 �G = T1. Clearly G = G�1, so it su�ces to show that G � T2 = T1 �G. Let P 0 = G(P )and let us consider the quadrilateral PQP 0Q0. Since O bisects its diagonal, it is a parallelogram. ThusjP 0Q0j = jPQj. We have T2(P ) = Q and G(Q) = Q0 by de�nition. Thus (G � T2)(P ) = Q0. Also G(P ) = P 0by de�nition and T1(P 0) = Q0 since jP 0Q0j = 1 and O1 must lie on P 0Q0 because it is symmetric to O2 withrespect to O, and O2 lies on the opposite side PQ. Thus T2 �G(P ) = Q0. This proves that G � T2 = T1 �Gsince P may be an arbitrary point from the domain of T in the above reasoning.1 The author is indebted for this observation to M. Wojtkowski



A solution to the Equichordal Point Problem 72.2. Invertibility and reversibilityThe maps U and T are clearly invertible on the image of their domains. Moreover, from the de�nitionU�1 = (G � T2)�1 = T�12 �G = T2 �G = G � U �G = G � T1:Whenever there is a map G such that U�1 = G �U �G, and G2 = id then U is called reversible (with respectto G). Thus U , and therefore T , are reversible maps.2.3. Formulas for the maps in Cartesian coordinatesLemma 2. If P = (x; y) and let x0 = x� x� a2p(x� a2 )2 + y2 ;y0 = y � yp(x� a2 )2 + y2 :(2)Then T2(P ) = (x0; y0) and U(P ) = (�x0;�y0).Proof. Left to the reader. Also, see [17].Corollary 1. The maps U = G � T2 and T = U2 are real-analytic on their domains. Moreover, U and Tare algebraic, i.e. the image of a point can be calculated by solving polynomial equations.We note that an explicit expression for T involves iterated square roots, and thus U is easier to work withwhen analytic techniques are involved.2.4. The �xed points and their stabilityThe next two lemmas contain results concerning the �xed points of U and T and their stability. They arestandard applications of dynamical systems techniques.Lemma 3. The map U has exactly two �xed points. They are the points of the line O1O2 whose distancefrom O is 1=2. Let us denote them by A1 and A2, where the indices are uniquely determined by the conditionthat O1 2 [A1; O2] and O2 2 [A2; O1].Every other point A of the line O1O2 for which U is de�ned, is a periodic point of period 2.The map T has as its �xed points all the points of the line O1O2 outside [O1; O2] and within distance1� a=2 from O. It has no other �xed points.Proof. Left to the reader.The next lemma is concerned with the linearization of the maps U and T at their �xed points.Lemma 4. Let A be a point of the line O1O2 and let A0 = T2(A). Then the derivative DT2(A) preserves thedirection of the line O1O2. It is an eigendirection with eigenvalue �1. The derivative DT2(A) also preservesthe direction normal to the line O1O2. The eigenvalue corresponding to this direction is� jA0O2jjAO2j :(3) The derivative DU(A) also preserves the tangent and normal directions to the line O1O2. The corre-sponding eigenvalues are �1 and jA0O2jjAO2j :(4)



8 Marek RychlikLet in addition A;A0 =2 [O1; O2]. Then A is a �xed point of T and the derivative DT (A) = DU(UA)DU(A)preserves the tangent and normal directions to the line O1O2. The corresponding eigenvalues are 1 andjA0O2jjAO2j � jAO1jjA0O1j :(5)The normal eigenvalue is positive and 6= 1.Proof. We could derive the properties of the derivative DT2(A) from the explicit formulas of Lemma 2 easily,or we can use simple geometry. We choose the second approach. Let us rotate A about O1 with unit angularvelocity. The point A0 = T2(A) also rotates about O2 with unit angular velocity. But the ratio of linearvelocities is exactly the eigenvalue. The linear velocities are jA0O2j and jAO2j.The statement about DU(A) follows as U = G � T2 and the derivative of the map G is plainly �I , andthus it preserves the direction of O1O2 as well as the normal direction.The statement about the eigenvalues of DT (A) can be deduced from the formula T = U2. Eventually, weneed to show that the normal derivative is never 1. Let A = (x; 0). Let us consider the case x > a=2. In thiscase A0 = (x� 1; 0). Thus our expression for the eigenvalue reduces to���(x� 1)� a2 ������x� a2 ��� � ���x+ a2 ������(x � 1) + a2 ��� = (1� x) + a2(1� x)� a2 � x+ a2x� a2 :(6)We can see easily that this expression is > 1.The case x < �a=2 is similar but it yields an eigenvalue < 1.2.5. The invariant manifoldsFrom the stability analysis of the previous subsection and from the Invariant Manifold Theory (see, forinstance, the �rst chapter of [9]) we can deduce the existence of local invariant curves for the �xed points ofU and T .Let us describe the invariant manifolds of T . Any �xed point of T (i.e. a point of the line O1O2 inthe domain of T ) has one neutral direction and one stable or unstable direction. As T is real-analytic, thissu�ces to show the existence of a unique real-analytic local invariant curve �loc(A) through A, tangent tothe hyperbolic direction. This fact follows from standard invariant manifold theory, for instance [9]. Theusual graph transform technique produces a C1-curve, but since uniform convergence in the analytic classimplies that the limit is analytic, the graph transform method produces an analytic curve. We note that weuse in an essential way the fact that the stable or unstable curve has dimension 1, and analyticity fails forhigher-dimensional invariant manifolds, even if the underlying map is analytic.Lemma 5. Let C be a generalized equichordal curve and let A 2 C be a point on the x-axis, and thus a �xedpoint of T . Then �loc(A) � C.Proof. Let us note that if C is a generalized equichordal curve then C\[O1; O2] = ;. Indeed, if P 2 C\[O1; O2]then T1(P ) =2 B(O2; 1) and thus is not in C. The line O1O2 is a normally hyperbolic invariant manifold nearthe point A, as A =2 [O1; O2]. The Invariant Manifold Theory tells us that the constructed manifolds �loc(A)foliate a neighborhood of the line O1O2 near the point A. Let us suppose that �loc(A) 6� C. Then there existsan arc C 0 � C such that C 0 is totally in the neighborhood of A foliated by �loc and which is not contained ina single leaf of the foliation �loc. By considering the family of arcs Cn = Tn(C 0) � C, where either n ! 1or n! �1, we come to a contradiction. Indeed if C contains a sequence of arcs converging to the line O1O2then C is not locally connected (cf. Figure 2). This contradiction proves the lemma.The above facts about invariant manifolds, including analyticity, were proven by Wirsing [17] by di�erent,but closely related methods.Having the local invariant curve �loc(A), we construct the global invariant curve, denoted by � (A):



A solution to the Equichordal Point Problem 9C
�loc(A)AFig. 2. When �loc(A) 6� C the curve C is not locally connected� (A) = � S1n=0 Tn(�loc(A)) for an unstable curve,S1n=0 T�n(�loc(A)) for a stable curve.(7)This construction may encounter a di�culty since T is not a globally de�ned map. In general, the invariantcurve may end on the boundary of the domain of T or T�1. It may also have many components.A generalized equichordal curve C (if it exists) intersects O1O2 at two points, say A1 and A2 suchthat O1 2 [A;O1], O2 2 A2O and jA1A2j = 1. For a moment we do not assume that A1 = (�1=2; 0) orA2 = (1=2; 0). We will see soon that this is indeed the case. We have observed that Ai =2 [O1; O2]. Thus, wemay assume that Ai = (xi; 0) where x1 < �a=2 and x2 > a=2.The construction of the global invariant curves for A1 and A2 does not run into trouble discussed in theprevious paragraph. Moreover, it is easy to see that� (A1) = CnfA2g;� (A2) = CnfA1g:(8)Thus C is the union of the invariant curves of these points.2.6. The symmetries of an equichordal curveFrom the above facts and the obvious reectional symmetries of T we easily deduce symmetries of C and ofthe invariant curves. Indeed, every invariant curve and C must be invariant under the reection through theline O1O2.The next lemma is just a bit more di�cult to prove.Lemma 6. A generalized equichordal curve C must also be invariant under the reection in the bisector ofthe segment O1O2.Proof. We will prove this lemma by contradiction. If C does not have this symmetry then A1 and A2 cannotbe symmetric with respect to O. Let C 0 be the reection of C in the bisector of the segment O1O2. This isclearly another equichordal curve. The points A0i, i = 1; 2, of the intersection of C 0 with the line O1O2 aredi�erent from Ai, i = 1; 2, with the exception of the case when A1 = (�1=2; 0) and A2 = (1=2; 0). It followsfrom the analysis of possible orderings of the points Ai and A0i that the curve C must intersect C 0 at somepoint A not on the line O1O2. Thus A is a common point of four invariant curves � (Ai) and � (A0i), i = 1; 2.But no two di�erent stable (or unstable) curves can intersect. Thus we have obtained a contradiction.2.7. A necessary and su�cient conditionThe results of this section provide a clear necessary and su�cient condition for the existence of an equichordalcurve.



10 Marek RychlikTheorem 2. For any given value of the parameter a there exists at most one equichordal curve, up torotations and dilations. This curve is a union of the invariant curves of the equichordal map T :C = � (A1) [ � (A2);where A1 = (�1=2; 0) and A2 = (1=2; 0).The necessary and su�cient condition of the existence of a generalized equichordal curve for a �xed a isthat the sets (consisting of two curves) � (A1)nfA1g and � (A2)nfA2g, coincide.Proof. In view of the prior discussion, only the su�ciency part of the last claim requires a proof. We will usea proof by contradiction.If the sets � (A1)nfA1g and � (A2)nfA2g do not coincide then their union is a �gure similar to a homoclinictangle (see Figure 3). They intersect along a discrete set (due to the analyticity) which contains a certaintrajectory (Pn)n2Z (Pn = Un(P0)) of the equichordal map U , for instance such that P0 is on the bisector ofO1O2. It is easy to see that the complement of the union � (A1)[� (A2) contains in�nitely many components.Thus it cannot be contained in any Jordan curve.

1aA1 O1 O O2 A2

P0� (A1) � (A2)P2 P�1P1 P�2
Fig. 3. Intersecting invariant curvesOne's �rst intuition is that these curves intersect transversally rather than coincide. This fact is also supportedby a numerical study. We will be able to prove that the curves don't coincide, but the transversality will notbe addressed.3. Coordinate systems and di�erence equationsIt is the nature of the Equichordal Point Problem that some analytic arguments can be carried out in a morestraightforward fashion if an appropriate coordinate system is given. In this paper we will use two coordinatesystems in addition to the natural, but not very useful Cartesian coordinates on the plane that we havealready used in the previous section.3.1. Equichordal and anti-equichordal sequencesIn dynamical systems a sequence (Pk)1k=�1 is called a (double-sided) trajectory of an invertible map � ifwe have �(Pk) = Pk+1 for all k 2 Z.It will be convenient to specialize the above de�nition in the following way:



A solution to the Equichordal Point Problem 11De�nition 3. (Equichordal and anti-equichordal sequence) A sequence of points (Pk)1k=�1 is called anequichordal (anti-equichordal) sequence if for k 2 Z the point Pk is in the domain of U (U�1), Pk is not onthe line O1O2, and U(Pk) = Pk+1 (U�1(Pk) = Pk+1).Equichordal sequences are easy to construct if there exists an equichordal curve. All we need to do is to picka point of the equichordal curve and iterate it forwards and backwards. If no equichordal curve exists, it isnot clear if even a single equichordal sequence exists. However, results in this direction have been obtained.The potential di�culty with constructing equichordal sequences is the possibility of leaving the domain of Uin a �nite number of steps.In the remainder of this section we give two coordinate systems which let us calculate the iterations ofU by means of solving certain di�erence equations. While in numerical experiments the bene�t of havingcoordinate systems other than the Cartesian coordinates of the plane is not essential, they will be used toproduce concise proofs of two important lemmas.3.2. Projective coordinatesLet P 2 R2nfO1; O2g. Let li for i = 1; 2 be the line parallel to OiP and passing through the origin O. Inthis way, with every such point P we associate a pair of lines (l1; l2) passing through O. We regard a linepassing through O as a point of the projective space P1. At this point, the reader may assume that this is thereal projective space, but without any modi�cations we will be able to extend the de�nition to the complexprojective space. The construction in the complex domain will be important later on.The pair (l1; l2) will be referred to as the projective coordinates of P .Let [z : w] denote the homogenous coordinates of any line l passing through the origin. Thusl = f(tz; tw) : t 2 Rg:(9) We will regard the notation [z : w] as synonymous with the line l. Thus, if li = [zi : wi] for i = 1; 2,then the projective coordinates of P will be the quadruple ([z1 : w1]; [z2 : w2]) with the usual projectiveequivalences.3.3. A representation of UA representation of U in projective coordinates can be given explicitly. The next lemma tells us how tocalculate a single iteration of U in projective coordinates. If the projective coordinates of P are (l1; l2) thenthe projective coordinates of U(P ) are (l2; l3) and thus we only need to give a method for calculating l3.Lemma 7. Let P be a point in the domain of U and not on the line O1O2 and let ([z1 : 1]; [z2 : 1]) beits projective coordinates. Then the projective coordinates of U(P ) are ([z2 : 1]; [z3 : 1]) where the triple(z1; z2; z3) satis�es the following di�erence equation1z1 � z2 + 1z2 � z3 = � �p1 + z22 :(10)Moreover, the Zariski closure of the set of all triples ([z1 : 1]; [z2 : 1]; [z3 : 1]) in P1 � P1 � P1 satisfying theabove di�erence equation is the set of all triples ([z1 : w1]; [z2 : w2]; [z3 : w3]) satisfying the equation:a2w22(z22 + w22)(z1w3 � z3w1)2 = (z1w2 � z2w1)2(z2w3 � z3w2)2:(11)Proof. In the proof we refer the reader to Figure 4.Let P = (x; y) and z1 = (x + a=2)=y, z2 = (x � a=2)=y, z3 = (x0 + a=2)=y0. From simple geometricconsiderations it follows that
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O2l2l3
l2 l3

P 0
OO1

U(P ) Pl1

Fig. 4. Representing U in projective coordinatesjPO2j = ap1 + z21jz1 � z2jjPO1j = ap1 + z22jz1 � z2jjP 0O1j = ap1 + z22jz2 � z3j :(12)The fundamental equichordal relation requires that jPO1j+ jP 0O1j = 1. This can be rewritten asap1 + z22jz1 � z2j + ap1 + z22jz2 � z3j = 1:(13)We note that either z1 < z2 < z3 or z1 > z2 > z3. The �rst possibility corresponds to P in the upper halfplaneand the second one to P in the lower halfplane. We verify easily that these are the only possibilities as longas we stay in the domain of U . This leads to 10.The Zariski closure result can be proven easily. Squaring equation 10 and clearing the denominatorsproduces equation 11 with w1 = w2 = w3 = 1. Thus, 10 implies 11. Going backwards is possible with theexception of points which lie on a variety of dimension 1, for we have to exclude triples for which wi = 0 fori = 1; 2 or 3, or z1w2� z2w1 = 0 or z2w3� z3w2 = 0 or z22 +w22 = 0 (the latter equation is needed if we studythe problem in the complex space). First we show that none of the polynomials w1, w2, w3, z1w2 � z2w1,z2w3 � z3w2 vanishes identically on the set of zeros of the polynomiala2w22(z22 + w22)(z1w3 � z3w1)2 � (z1w2 � z2w1)2(z2w3 � z3w2)2:(14)This can be done by explicitly solving a system of two polynomial equations consisting of one equation ofthe family w1 = 0, w2 = 0, w3 = 0, z1w2 � z2w1 = 0, z2w3 � z3w2 = 0 and a2w22(z22 + w22)(z1w3 � z3w1)2 �(z1w2 � z2w1)2(z2w3 � z3w2)2 = 0. Thus the exceptional set of these points where 11 does not imply 10, hasdimension less than the dimension of the variety of the last polynomial, i.e. 2. Thus, the dimension is � 1and since it is not 0, it is equal to 1. The reader is encouraged to write the equations for exceptional points



A solution to the Equichordal Point Problem 13explicitly. In conclusion, if we have a triple ([z1 : w1]; [z2 : w2]; [z3 : w3]) which is not exceptional then theequivalent triple ([z01 : 1]; [z02 : 1]; [z03 : 1]), where z0i = zi=wi, satis�es the di�erence equation 10.Corollary 2. Let (Pn)n2Z be an equichordal sequence. Let (zn)n2Z be a sequence of real numbers such thatthe projective coordinates of Pn are ([zn�1 : 1]; [zn : 1]). Then this sequence is monotonic and it satis�es theequation 1zn+1 � zn + 1zn � zn�1 = ��p1 + z2n ;(15)where � 2 f�1; 1g. Moreover, � = 1 (� = �1) corresponds to the increasing (decreasing) sequences (zn), whichin turn correspond to equichordal sequences in the lower (upper) halfplane or anti-equichordal sequences inthe upper (lower) halfplane.Remark 1. Equation 11 de�nes a ternary algebraic relation between three points of the projective space,namely [z1 : w1], [z2 : w2] and [z3 : w3]. In other words, it de�nes an algebraic subset of P1 � P1 � P1.3.4. Conversion to Cartesian coordinatesOur �nal result on projective coordinates concerns the conversion between the projective and Cartesian coor-dinates. It proves that this conversion is performed by a bi-rational map. As most of our future constructionsare invariant under bi-rational equivalence, the result below demonstrates that the results derived in theprojective coordinates also hold in Cartesian coordinates, although establishing the correspondence betweencalculations may lead to quite complicated expressions in some cases.Let P = (x; y) have projective coordinates (l1; l2) where li = [zi : wi] for i = 1; 2. The equationsl1 = [z1 : w1] = hx+ a2 : yi ;l2 = [z2 : w2] = hx� a2 : yi ;lead to the system �x+ a2�w1 = yz1;�x� a2�w2 = yz2:The solution to this system gives an explicit formula for conversion from projective to rectangular coordinates.Lemma 8. Let P = (x; y) be a point given in Cartesian coordinates and let (l1; l2) be its projective coordi-nates. Let li = [zi : wi] for i = 1; 2. The formulasx = a2 z1w2 + z2w1z1w2 � z2w1 ;y = aw1w2z1w2 � z2w1 :(16)give an explicit conversion formula from projective to Cartesian coordinates. The map (l1; l2) 7! (x; y) is abi-rational map. The inverse map is given by (x; y) 7! ([x + a=2 : y]; [x � a=2 : y]) which is rational whenexpressed in the standard charts on the projective spaces.
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Fig. 5. Representing U in radial coordinates3.5. Radial coordinatesLet P = (x; y) be a point given in Cartesian coordinates. The radial coordinates of P are (r; s), wherer = jP �O2j =p(x� a=2)2 + y2(17) s = jP �O1j =p(x+ a=2)2 + y2(18)Lemma 9. Let (r; s) be the radial coordinates of P and let Q = U(P ) have radial coordinates (r0; s0). Thens0 = 1� r(r0)2r + (1� r)s2 = a2 + rs0:(19)Proof. The �rst equation follows immediately from the de�nition of an equichordal curve.The proof of the second equation consists in writing the cosine law for triangles O1O2P and O1O2P 0side-by-side: s2 = a2 + r2 + 2ar cos�;(r0)2 = a2 + (s0)2 � 2as0 cos�:Upon elimination of cos� from both equations we arrive atr(r0)2 + s0s2 = a2(r + s0) + r(s0)2 + r2s0:(20)We use r + s0 = 1 twice in order to transform the right-hand side to the desired form a2 + rs0.Radial coordinates are not bi-rationally equivalent to Cartesian ones. However, we will use them in a verygeometric way and in the real domain. Thus, algebraic properties will be of a lesser consequence.Lemma 10. The map (x; y) 7! (r; s), where r and s are given by 17, maps the lower and upper halfplane ofthe xy-plane di�eomorphically onto the regionX = f(r; s) : r; s > 0; jr � sj < a < r + sg:



A solution to the Equichordal Point Problem 15Proof. The triangle inequality implies that the image is in X . Clearly, the map (x; y) 7! (r; s) is di�erentiablein each of the halfplanes.We will �nd the formula for the inverse map on X . It is easy to see by subtraction of the equationsr2 = (x � a=2)2 + y2;s2 = (x + a=2)2 + y2;that s2 � r2 = 2ax. Thus x = (s2 � r2)=2a andy2 = r2 � �x� a2�2 = r2 ��s2 � r22a � a2�2= r2 ��s2 � r2 � a22a �2 = �r � s2 � r2 � a22a ��r + s2 � r2 � a22a �= �2ar � s2 + r2 + a2� �2ar + s2 � r2 � a2�(2a)2= �(r + a)2 � s2� ��(r � a)2 + s2�(2a)2= (r + a� s)(r + a+ s)(s� r + a)(s+ r � a)(2a)2= �(r + s)2 � a2� �a2 � (r � s)2�(2a)2 :(21)Thus, the inverse map on X is given by the formulasx = s2 � r22ay = �p((r + s)2 � a2) (a2 � (r � s)2)2a :(22)The choice of the sign depends on which halfplane we would like to map X to. The above formulas show thatthe map (r; s) 7! (x; y) is di�erentiable on X .3.6. Semi-projective coordinatesThis version of a coordinate system is intermediate between the projective and rectangular coordinates. It isparticularly suited to studying the behavior of the equichordal map near the x-axis. Thus, if we start fromthe rectangular coordinates, we keep x as a coordinate and we use w = y=(x� b) as the second coordinate.Let us �nd the expression for the equichordal map in semi-projective coordinates. We will seek it in theform (x;w) 7! (x0; w0). First, x0 = �x+ x� bp(x � b)2 + y2 = �x+ 1p1 + w2 :(23)Second, y0 = �y + yp(x� b)2 + y2 = �y + wp1 + w2= �w(x � b) + w(x + x0) = w(x0 + b):(24)Thus, w0 = w(x0 + b)=(x0 � b). In summary, the equichordal map in new coordinates is expressed as



16 Marek Rychlikx0 = �x+ 1p1 + w2 ;w0 = x0 + bx0 � bw(25)with the understanding that we calculate x0 �rst and use it in the second equation.4. The existence of invariant conesLet P be an arbitrary point of the equichordal curve C. In the sequel we need to know that the lines POi,i = 1; 2, are not tangent to C. This fact allows us to prove the non-existence of equichordal curves withoutthe assumption of convexity. Upon the �rst reading of this paper one may simply assume that C is convex,or assume the result just stated, and skip to the next section.4.1. A description of the conesLet P be a point in the plane.

O1 A O2
K(P )

y
x

P
Fig. 6. The invariant coneLet K(P ) denote the cone in the tangent space of the plane at P consisting of all vectors (dx; dy) suchthat (dx; dy) is tangent to a circle centered at some point A 2 [O1; O2] and passing through P (see Figure 6).The cone K(P ) admits an extremely simple description in the radial coordinates (r; s). It is simply the setof tangent vectors of the form (ds; dr) in the second and fourth quadrant, i.e. those tangent vectors for whichdr and ds are of di�erent signs. This property was our sole reason for introducing the radial coordinates.4.2. The invariance of the conesWe are ready for the formulation of the main result of this section.Theorem 3. Let P be a point in the halfplane x � a=2. Let DU(P ) denote the derivative of the map U atP . Then DU(P )(K(P )) � K(UP ):(26)



A solution to the Equichordal Point Problem 17Proof. Of course, we will perform the necessary calculations using radial coordinates. More precisely, we willcalculate the derivative of the map (r2; s2) 7! ((r0)2; (s0)2), where r0 and s0 are given by the equations(r0)2 = ��1r � 1� s2 + (1� r) + a2r ;s0 = 1� r(27)following from 19 of Lemma 9. The use of squares of r and s will produce a somewhat more pleasing �nalresult. Thus, d(r0)2 = � 1r2 s2 � 1� a2r2� dr ��1r � 1� ds2= s2 � r2 � a22r3 dr2 � s0r ds2:(28)On the other hand, d(s0)2 = �2s0dr = �(s0=r)dr2. Hence, the matrix of DU(P ) can be expressed in radialcoordinates as � s0r � � s2�r2�a22r2s0 11 0 � :(29)The preservation of cones is most clearly shown by writing a formula for the projectivised map DU(P ) as alinear fractional map: d(r0)2d(s0)2 = �s2 � r2 � a22r2s0 +�dr2ds2��1 :(30)As long as the expression s2� r2� a2 � 0, the negativity of the ratio dr2=ds2 is preserved. This is in essencethe statement of the lemma. We note that s2 � r2 � a2 = 0 on the line perpendicular to O1O2 and passingthrough O2, i.e. the line x = a=2. Moreover, s2 � r2 � a2 � 0 i� x � a=2.4.3. The bounds on the equichordal curveLet us apply the invariance of the cones introduced in this section in order to prove the following theorem(cf. Figure 7):Theorem 4. Let D be the set of points P = (x; y) for which1. x � b (we recall that b = a=2);2. jPO1j � jA2O1j; we note that jA2O1j = (1� a)=2;3. jPO2j � jA2O2j; we note that jA2O2j = (1 + a)=2.The region D is contained in the domain of U , i.e. the unit disk about O2.There is a unique number L > 0 and a unique analytic arc  : [�L;L]! D such that1. ( _I) is contained in the line x = b; moreover, the points of ( _I) are the only points of the arc  which liein the boundary of D;2. (]0; L]) is contained in the upper halfplane, ([�L; 0[ ) is contained in the lower halfplane and (0) = A2;3. (t) and (�t) are symmetric with respect to the x-axis for every t 2 [0; L];4. k0(t)k = 1, i.e.  is parameterized by the length element;5. 0(t) 2 K((t)) for all t 2 I;6. ([�L;L]) � � (A2).Proof. The proof of the fact that D is contained in the unit circle (not shown in Figure 7) about O2 isstraightforward.The next step of the proof is a construction of an invariant curve 0 : [��; �] ! D which has all theproperties listed above except that it does not extend to the boundary of the region D, i.e. it does not havethe �rst property. This can be achieved by iterating a piece of a circle with center at the origin and passing
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O
1 O1 O2 A2
DFig. 7. The invariant region Dthrough A2. This circle is clearly in D and it satis�es the cone condition. The iterations of this circle forwardby U converge to a curve 0 with the desired properties via the proof of the Invariant Manifold Theorem. Weverify easily that all properties listed carry through the iteration process and are also valid after passing tothe limit.Subsequently, we need to show that a curve 0, which is already invariant in the sense that its image underU contains 0([��; �]), can be enlarged by the iteration process to extend to the line x = b. More precisely,if n : [�Ln; Ln] ! D denotes the curve Un � 0 parameterized by its length element then we need to showthat for some n there is a number L such that n(L) lies on the line x = b. Thus, it su�ces to show that forsome n the curve n extends up to the line x = b. This is true because every point P in D will leave D aftera �nite number of steps and will end up in the half-plane x < b. Indeed, if P is close to the line O1O2 then itwill move away from this line by a distance which is uniformly bounded away from 0, due to the fact that aneighborhood of A2 is foliated by unstable leaves of the points of O1O2. If we are already within a distance� from O1O2 then we will fall into the half-plane x < b after a number of steps uniform in �. This is due tothe fact that all points on a line l passing through O2 move towards the half-plane x < b, as measured by theincrease of the angle � (see Figure 5). Moreover, the increase of the angle � is uniform in �.Finally, let us address the issue of intersections of  with the boundary of D. Equation 30 implies thatthe tangent 0(t) is strictly in the interior of the cone K((t)) for all t 2 [�L;L]. Moreover, this implies thatif the curve  is expressed in coordinates (r; s) as r = h(s), i.e. as a graph of a function h, then the functionh is strictly decreasing. This translates in  lying in the interior of D, except for ( _I).Lemma 11. The image under U of the intersection of the two unit disks about O1 and O2 is disjoint fromthe disk of radius a=2 about O.Proof. We will use radial coordinates. In view of Lemma 10 the region in question is described in radialcoordinates as R = f(r; s) : 0 < r; s < 1; jr � sj � ag:(31)



A solution to the Equichordal Point Problem 19The disk of radius a=2 about O is given by the inequality r2 + s2 � a2. We need to show that if (r0; s0) aregiven by formulas 19, where (r; s) 2 R, then (r0)2 + (s0)2 > a2. We have the following identity:(r0)2 + (s0)2 � a2 = �1� rr s2 + (1� r) + a2r � a2 + (1� r)2= �1� rr (s2 � a2)(1� r)(2� r):(32)Thus, (r0)2 + (s0)2 > (a=2)2 i� s2 � a2 < 2r � r2:(33)This is equivalent to s2 + (r� 1)2 < 1+ a2. Thus our question really is whether the region R is contained inthe disk s2 + (r � 1)2 < 1 + a2. As it is easy to see, this is indeed the case (see Figure 8).

p1 + a2r(1; 0)
R

(a; 0)(0; a)
(0; 1)s

Fig. 8. The region R is contained in the disk s2 + (r � 1)2 < 1 + a2Remark 2. The image of the part of the boundary of D lying on the line x = a=2 under U is a union of twosegments of the line x = �a=2. Thus, the image curve 1 = U �  extends to the line x = �a=2. Moreover,the tangent of 1 is also in the corresponding cone: 01(t) 2 K(1(t)) for t 2 [�L;L]. Thus, 1 contains twoarcs connecting the lines x = a=2 to x = �a=2. In particular, 1 intersects the y-axis.4.4. The star-like property for equichordal curvesWe recall that we de�ned a generalized equichordal curve as having two properties:1. C � B(O1; 1) \B(O2; 1);2. Ti(C) � C for i = 1; 2.



20 Marek RychlikA priori, this de�nition could include curves which are not star-like. However, the main result of this sectioncan be formulated as follows:Theorem 5. Let C be a generalized equichordal curve. Then the curve C is strongly star-like with respectto the points O1 and O2 and it is equichordal.Proof. Indeed, the generalized equichordal curve C (if it exists) is a union of the curve 1 described inRemark 2 and its mirror image ~1 in the y-axis. Moreover, these curves must overlap in the region �a=2 �x � a=2 by Theorem 2. The cones are symmetric with respect to taking the mirror image. Thus, the tangentof C at any P 2 C is always in the cone K(P ). We claim that C is strongly star-like if C is disjoint fromthe disk x2 + y2 � (a=2)2. Indeed, if a point P is outside of the disk then the cone K(P ) does not containthe two lines connecting P to O1 and O2. This implies that C is strongly star-like. But we can see easily
T1(P ) T2(P )O2PO1

Fig. 9. C is disjoint from the disk x2 + y2 � (a=2)2that if P is in the disk x2 + y2 � (a=2)2 then T1(P ) =2 B(O2; 1) and T2(P ) =2 B(O1; 1) (cf. Figure 9). Indeed,the angle at P formed by the segments PO1 and PO2 is obtuse. Hence, jT1(P ) � O2j � jT1(P ) � P j = 1.Similarly, jT2(P )�O1j � jT2(P )�P j = 1. Hence, a generalized equichordal curve C is disjoint from the diskx2 + y2 � (a=2)2.Remark 3. Dirac [4] proved that if an equichordal curve C exists then it is disjoint from the disk centeredat Oi with radius (1 � a)=2, i = 1; 2. He also proved that C is contained in the union of the disks centeredat Oi of radius (1 + a)=2. These bounds follow from our in�nitesimal cone condition (the tangent line to Cat P 2 C is in K(P )), as it was observed in the proof of the last theorem. Dirac's condition was used byMichelacci [12] to establish the absence of equichordal curves for a > :33.5. Heteroclinic connections of algebraic relationsIn the current section we address the problem of the existence of heteroclinic and homoclinic connections foralgebraic multivalued mappings. We will formulate our results for the case of heteroclinic connections, as itis directly applicable to the Equichordal Point Problem. The case of homoclinic connections can be handledin an identical way.The reader will observe that in this section we systematically use the complex domain. Unless stated oth-erwise, every variable assumes complex values. In previous sections some of our considerations had inherentlyreal-domain character, for example those of section 4. Most considerations, however, especially of algebraiccharacter, do not depend on whether we stay in the real or complex domain. In particular, the formulas forthe projective and semi-projective coordinates remain the same. The equichordal map however, relied uponthe choice of the branch of p�. As we continue the equichordal map into the complex domain, we may arriveat both branches of p� depending on the path of analytic continuation. It is our intention to construct globalobjects. Thus in order to have good local properties, we must allow arbitrary analytic continuations. This iswhy we need to consider the equichordal map as a multivalued map in the complex domain.Finally, the algebraic character of the equichordal map will also be important. We note that when weiterate an analytic curve via an algebraic map, the newly introduced singularities are algebraic and theycan be dealt with easily by �lling in resulting punctures. In principle our techniques should be applicable tocertain non-algebraic maps with algebraic singularities, for instance the ones involving expressions sin z+pz.



A solution to the Equichordal Point Problem 215.1. Basic notionsLet X be a complex projective variety of dimension n. Thus, X can be realized as a subvariety of a complexprojective space Pr(C ) for some r. However, the particular method of embedding is immaterial. The onlyreference to the ambient projective space is made when we de�ne a holomorphic map between varieties. Amap is holomorphic at a point if it is a restriction of a holomorphic map of the ambient projective spaces.Let R � X �X be a subvariety of dimension n. We would like to think of R as a graph of a multivalued,locally invertible map, with the exception of a small set of points. We proceed to formulate an appropriateset of assumptions.Let �i : X � X ! X , i = 1; 2, be the projection onto the �rst and second factors respectively. We willassume that1. �l(R) = X for l = 1; 2;2. there is a subvariety S of dimension strictly less than n such that the map �ljR is biholomorphic at pointsof RnS for l = 1; 2.If the above assumptions are satis�ed then we call R a non-singular binary algebraic relation on X , or simplyan algebraic relation.If R is an algebraic relation then for most points it can be locally represented as a graph of a biholomorphicmap. Let Si = �i(S). These are two subvarieties of X of dimension < n. If x 2 XnS1 and let ��11 (x) =fy1; y2; : : : ; ymg. There exists a neighborhood U of x totally contained in XnS1 and a map �j : U ! X ,j = 1; 2; : : : ;m such that R \ (U �X) = m[j=0 graph(�j):(34)Moreover, graph(�j)\ graph(�k) = ; for j 6= k. The maps �j will be called the local branches of the relationR. A similar construction can be carried out for the inverse relation R�1 by exchanging the role of the factorsin X �X .We note that relations can be iterated and thus they introduce a class of dynamical systems. For everyn � 1 we de�ne Rn � X2 as the set of pairs (x0; xn) such that there exist x1; x2; : : : ; xn�1 2 X with theproperty that for k = 0; 1; : : : ; n� 1 we have (xk; xk+1) 2 R. This object is also known as the n-th transitiveclosure of the binary relation R. A tuple (x0; x1; : : : ; xn) with the property that for k = 0; 1; : : : ; n � 1 wehave (xk ; xk+1) 2 R is also called an orbit or trajectory of R of length n+ 1. In�nite and semi-in�nite orbitscan also be de�ned.The n-th transitive closure can be also represented in the following way:Rn = �0;n n�1\k=0 ��1k;k+1(R)! ;(35)where �k;l : Xn+1 ! X2 is the projection onto the k-th and l-th factor. The intersection, which lies in Xn+1,is obviously a variety. A projection of a variety is a variety, if the projection map is proper. As we restrictedourselves to the case of projective varieties, every projection is automatically proper.We note that an image and preimage of a set is well de�ned for relations. For instance R(A) = fy : 9x 2A : (x; y) 2 Rg. If R is an algebraic relation (not necessarily regular) then images and preimages of algebraicvarieties are also varieties. Indeed, R(A) = �2�(A�X)\R�. The intersection is a subvariety. If the projectionis proper then so is R(A). We will need to consider the case of holomorphic subvarieties A. In this case R(A)is proper if the projection �2 is proper.In addition, if R is a non-singular algebraic relation then the same is also true for Rn for all n � 1. Thiscan be shown easily based on the fact that compositions of n regular local branches of R form regular localbranches of Rn.The full forward image of a set A � X is the set1[n=0Rn(A):(36)



22 Marek RychlikIn a similar way we de�ne a full backward image and full (two-sided) image of a set.Our �nal remark concerns relations for which S = ;. In this situation �ljR for l = 1; 2 is a covering map.If �ljR, l = 1; 2, has multiplicity 1 then these maps are biholomorphic, which is equivalent to R being a graphof a biholomorphic map of X . Also, the Riemann removable singularity theorem implies that if S is �nite and�ljR has multiplicity 1 then S is actually empty and R is a graph of a biholomorphic map. This criterion isespecially useful when dimX = 1.5.2. Invariant varietiesLet R be an algebraic relation on a projective variety X and let V � X be a subvariety. We would like togive a de�nition of V being invariant under R. It is tempting to say that V is invariant when R(V ) � V orso. However, hardly any variety would be invariant in this sense. Thus we will adopt a weaker de�nition.De�nition 4. A subvariety V � X is invariant if1. the set V 0 = V n(�1(S) [ �2(S)) is Zariski-open and dense in V ;2. there exists a non-singular algebraic relation R0 on V such that R0 � R under the natural identi�cationV � V � X �X.We note that the �rst condition is to avoid the situation when (V �V )\R has dimension greater than dimVat points whose dimension is as big as dimV . We note that R0 is a subvariety of (V � V ) \ R. There couldbe several other components, amongst them some that are not non-singular algebraic relations.We will call an invariant variety V ordinary if the relation R0 has empty singular set. In this situationR0 is a graph of a covering map. As we have mentioned, if R0 has multiplicity 1 then R0 is a graph of abiholomorphic map of V .5.3. An exampleIn this subsection we will describe one of the few non-trivial examples of an invariant variety for an algebraicrelation. It results from the study of the equireciprocal problem. The algebraic relation can be expressed inthe form of the following di�erence equation, when projective coordinates are used:zn+1 � zn�1 = cp1 + z2n:(37)This equation has a very similar structure to the di�erence equation which occurred in our study of theEquichordal Point Problem. It can be seen easily that this di�erence equation has a one-parameter family ofsolutions which can be represented by the following formulas:zn = f(�nw);f(w) = 12 �w � 1w� ;c = �� 1�:(38)Indeed, it is su�cient to show that equation 37 holds for n = 0. We havez1 = �w � 1�w ;z�1 = w� � �w ;z1 � z�1 = 12 ��� 1���w + 1w� :(39)We complete the proof by invoking the identity:



A solution to the Equichordal Point Problem 23p1 + f(w)2 = 12 �w + 1w� :(40)Let us de�ne the multivalued map (but single-valued in the real domain, if we agree to choose the principalbranch of p�): F (�0; �1) = (�1; �0 + cq1 + �21 ):(41)The di�erence equation is related to this mapping via the formula F (zn�1; zn) = (zn; zn+1). Thus, �nding asolution to the di�erence equation is equivalent to iterating the map F .Let us interpret equations 39 as the fact that F possesses an invariant variety. Let us de�ne a mappingg : C � ! C 2 by the formula: g(w) = (f(w); f(�w)):(42)Let V be the image of the mapping g. It is easy to see that V is an ordinary invariant variety of the multivaluedmap F . The relation R0 is described using the parameter w as the graph of the automorphism w 7! �w. Wenote that there is another relation R00 on V , which is the graph of the map w 7! �(1=�)w. We note that if �is a root of the equation c = �� 1=� then �1=� is also a root. We can see easily that (V �V )\R = R0 [R00.The second component can be obtained from the above considerations by choosing the other branchp1 + f(w)2 = �12 �w + 1w� :(43)For simplicity, we have avoided the projective details in the above arguments. In order to put the aboveexample into the projective setting, we need to \add the points at in�nity" in the same way as we have donein dealing with the Equichordal Point Problem.We note that the variety V is an algebraic curve of genus 0. Moreover, we have explicitly parameterizedit by rational functions. As the reader will see, this is the only kind of an invariant variety under suitable setof assumptions applicable to the equichordal problem and equireciprocal problem. However, as we will see,in the case of the Equichordal Point Problem the existence of an invariant variety of genus 0 is excluded.We note that the above variety, when translated to rectangular coordinates, is an ellipse. Thus, we haveshown in a round-about way that ellipses solve the equireciprocal problem. This result belongs to Klee [11]. Seealso [5], where low smoothness solutions to the equireciprocal problem are found. However, our considerationswill also yield a new result about the equireciprocal problem: the ellipses are the only analytic solutions tothe equireciprocal problem.5.4. The equichordal relationOur main interest is the algebraic relation derived in the course of our study of the Equichordal Point Problem.Also, discussing an example is most appropriate before further development of the theory.The equichordal relation can be studied using several coordinate systems. In rectangular coordinates, wecan consider the two local branches (cf. Lemma 2):F�(x; y) =  �x� x� a2p(x� a2 )2 + y2 ;�y � yp(x� a2 )2 + y2! :(44)In both formulas the choice of the sign should be the same. Clearly, these functions are de�ned everywherein C 2 except for a variety (x � a=2)2 + y2 = 0, i.e. a union of two lines x � a = �iy. We may even de�nemore local branches by choosing any branch of the p� and using the above formula.The equichordal relation R represented in rectangular coordinates is the subset of C 2 � C 2 which is theZariski closure of the union of the graphs of all local branches de�ned above. It is not too di�cult to explicitlywrite down the polynomial equation of R. If (x2; y2) = F (x1; y1) then the coordinates x1, y1, x2, y2 satisfythe following system of polynomial equations:(x2 + x1)2((x1 � a)2 + y1)2 � (x� a=2)2 = 0;(y2 + y1)2((x1 � a)2 + y1)2 � y2 = 0:(45)



24 Marek RychlikIn order to see that this is indeed the Zariski closure, we need to show that the a�ne variety in C 2 isirreducible. This is easily accomplished directly with the help of some commutative algebra. However, we willsee that we have already proved this fact indirectly in projective coordinates (we remember that irreducibilityof varieties is a birational invariant, and thus it is su�cient to see that the image of the variety R in projectivecoordinates is irreducible).Let us look at the equichordal relation in projective coordinates. Let X = P1(C )�P1(C ) and R is de�nedat the set of pairs (([z1 : w1]; [z2 : w2]); ([z2 : w2]; [z3 : w3])) where the coordinates satisfy the equation:a2w22(z22 + w22)(z1w3 � z3w1)2 = (z1w2 � z2w1)2(z2w3 � z3w2)2:(46)This is the expression that we derived in Lemma 7. The next lemma veri�es the main assumption of ourtheory.Lemma 12. The variety R is an irreducible projective variety. Moreover, it is a non-singular algebraicrelation in the sense introduced in this section.Proof. Rather than verify the non-singularity directly, we will use Lemma 7. It is a conclusion from the proofof that lemma that the set of points of the form (([z1 : 1]; [z2 : 1]); ([z2 : 1]; [z3 : 1])), where (z1; z2; z3) satis�esthe di�erence equation 1z1 � z2 + 1z2 � z3 = � 1ap1 + z22 :(47)is Zariski-open and dense in R. Finding the branches of R is equivalent to solving the di�erence equationwith respect to z3. We have an explicit, albeit complicated, formula for z3:z3 =  �(z1; z2) = z2 � 1� 1ap1+z22 � 1z1�z2 :(48)Of course, we need to exclude a certain set of points for which the right-hand side is not de�ned, i.e. thepoints for which either z2 = �i or a2(1 + z22) = (z1 � z2)2. The excluded points form a variety of dimension1. We may even de�ne the local branches of R as��([z1 : 1]; [z2 : 1]) = ([z2 : 1]; [ �(z1; z2) : 1]):(49)We need to restrict the domain to any neighborhood on which a branch of p1 + z22 is de�ned. Nevertheless,the union of the graphs of all local branches constructed in this way �lls up a Zariski-dense subset of R. Thesingular set of �1jR is disjoint from this union and thus it has dimension smaller than n = 2. It is easy tosee that the dimension is � 1. Thus, the singular subvariety S has dimension 1 in our situation.5.5. Fixed points and local invariant manifoldsWe will say that a point A 2 X is a �xed point of a relation R if (A;A) 2 RnS. Thus A is a �xed point i�the set fAg is an invariant variety. Thus, A is a �xed point of a non-singular local branch F : U ! X of R,where U is a neighborhoood of X . Moreover, the germ of the branch F is uniquely determined.The local theory of dynamical systems is applicable to the �xed points under consideration. The notion ofa local stable and unstable manifold is well-de�ned. More generally, we may de�ne a local invariant manifold.5.6. Fixed points of the equichordal relationWe have already discussed the �xed points of the equichordal relation, using rectangular coordinates of theplane. There are two �xed points of the \principal" branch F+: A1 = (�1=2; 0) and A2 = (1=2; 0). Wehave already seen that DF+(Ai) has one neutral eigendirection, namely that of the horizontal axis, and onehyperbolic direction, corresponding to the vertical axis. The hyperbolic eigenvalue at A1 and A2 is



A solution to the Equichordal Point Problem 25�1 = 1� a1 + a;�2 = 1 + a1� arespectively. We note that �1�2 = 1:(50)This last equation is a direct consequence of the symmetry in the Equichordal Point Problem.5.7. Local invariant manifolds of the equichordal relationLet A be a stable �xed point of an algebraic relation R and let F : U ! X be the unique local branch ofR such that F (A) = A. Let us suppose that a local stable invariant curve is given, i.e. a holomorphic curveW =W sloc(A) � U such that F (W ) �W . Moreover, we assume that A is an attractive �xed point within W .We will �x a parameterization � : B(0; �0)!W , B(0; �0) � C , which linearizes the map F , i.e. F �� = ���.Thus, the following diagram commutes: B(0; �0) ��! B(0; �0)??y� ??y�W F�! W(51)The existence of � follows from local theory of dynamical systems. Also, it will be convenient to introducenotation 	 = ��1, 	 : W ! C . Thus, 	 is a chart on W , and we will call it the linearizing parameter.Clearly, 	 � F = �	 .The local invariant manifold of the equichordal relation can be thought of as a local solution of a certainfunctional equation. A particularly pleasing form of the functional equation is obtained if the projectivecoordinates are used. Let � = (f; g). For any z 2 B(0; �0) we consider the points (z1; z2) = �(��1z)and (z02; z3) = �(z). We must have z02 = z2, which implies that g(��1z) = f(z). Hence g(z) = f(�z) forz 2 B(0; ��1�0) and the local invariant curve can be expressed in terms of only one unknown function f .Moreover, from Lemma 7 we know that (z1; z2; z3) satisfy the di�erence equation 10. Hence, we obtain thefollowing functional equation: 1f(�z)� f(z) + 1f(z)� f(z=�) = �p1 + f(z)2(52)which holds for z 2 B(0; ��1�0). The above equation de�nes a Riemann surface of f . In our future consider-ations we will consider a number of Riemann surfaces strongly related to this Riemann surface. We note thatthe above functional equation provides a way to continue f to a multivalued function de�ned on C , namely,given f(�z) and f(z), we may use the above equation to de�ne f(��1z). This provides continuation to disksB(0; �n�0) for all n � 0.It is also straightforward to derive the functional equations in rectangular and semi-projective coordinates.For example, in semi-projective coordinates there are two functions X(z) andW (z) which satisfy the followingsystem of functional equations in a neighborhood of 0:X(�z) = �X(z) + 1p1 +W (z)2 ;W (�z) = X(�z) + bX(�z)� bW (z):This system will come in handy in the �nal stages of our proof.



26 Marek Rychlik5.8. The concept of a global invariant curveOnce we have established the existence of a local invariant curve, the next step in the classical theory ofdynamical systems would be to construct a global invariant curve by iterating W backwards and taking theunion of the preimages. One proves then that the resulting curve is an embedded copy of C (or R in thereal case). For algebraic relations the situation is a little more delicate. A simple-minded generalization of thenotion of the global invariant curve would lead to the following de�nition:W s(A) = 1[n=0R�n (W sloc(A)) :(53)However, the preimages calculated along di�erent chains of local branches can intersect in complicated ways.It is not di�cult to imagine (although a bit harder to construct analytic and algebraic examples) in whichW s(A) is not locally connected. Thus, W s(A) constructed in this way is not a very useful object.What we need to do is to make use of the algebraic, or at least analytic, structure to systematicallydesingularize the preimages R�n (W sloc(A)). Once we have done that, the modi�ed union will be a Riemannsurface.The classical method of desingularization of curves is the use of germs of curves instead of points. Let usbriey summarize the relevant notions and explain how we may apply them to construct W s(A).Let y 2 X be a point of the variety X . Let U1 and U2 be two neighborhoods of y and let V1 andV2 be two d-dimensional holomorphic varieties in U1 and U2 respectively, passing through y. We de�ne anequivalence relation by calling (U1; V1) equivalent to (U2; V2) i� there is a neighborhood U � U1 \ U2 suchthat V1 \U = V2 \U . The equivalence class of this relation is called a germ of a variety at y. In keeping withthe standard notation, the equivalence class represented by (U; V ) will be denoted [V ]y. We will call the germnon-singular if there is a representative in which V is a non-singular variety. We note that the dimension ofa germ is well-de�ned. If (U; V ) is the representative then the dimension of V at the point y is the dimensionof the germ [V ]y. The germs of curves are simply non-singular germs of dimension 1.The full construction of W s(A) consists of two parts. In the �rst part we construct an open and densesubset of W s(A) which we will denote by 0W s(A) and call the unbranched stable manifold of A. Roughlyspeaking, 0W s(A) is obtained by taking preimages of W sloc(A) using only regular local branches of R. Atthis stage, the surface 0W s(A) can have punctures. Passing from 0W s(A) to W s(A) consists of �lling in thepunctures. In the �rst part we use only the analyticity of the relation R. The second part relies upon thealgebraic nature of the singularities of R.5.9. The unbranched stable manifoldThe construction of the unbranched stable manifold is included mainly for the purpose of giving the readerthe insight that will be useful in studying the construction of the branched manifold. It plays the intermediaterole analogous to the unbranched Riemann surface associated with an algebraic curve. We remember thatonly after adding branch points the notion of the Riemann surface is fully exploited. The same statement canbe made about the following construction. The reader should consult Figure 10 for a graphic illustration ofthe next de�nition.De�nition 5. (Unbranched stable manifold) The surface 0W s(A) as a set consists of sequences of germs(mn)1n=0, where each mn is a germ of a curve Vn at a point yn. We will require the following additionalproperties:1. for every n � 0 there is a unique regular local branch �n of the relation R such that �n(Vn) = Vn+1 and�n(yn) = yn+1;2. for su�ciently large n we have Vn �W sloc(A) and �n = F .The structure of a 1-dimensional complex manifold on 0W s(A) is de�ned in the following way. Let us �x thecurves Vn as in the de�nition above. Let N be such that for n � N we have Vn �W =Wloc(A) and �n = F .Using the linearizing parameter on W , we can introduce a family of charts on the curves Vn via the formula	n = 	 � �N � �N�1 � � � � � �n(54)
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Fig. 10. Constructing the unbranched stable manifoldfor n � N and 	n = 	 jVn for n � N . For every initial condition z0 2 V0 we consider the trajectory zn byrequiring that �n(zn) = zn+1. The coordinate neighborhood of the sequence m = (mn) is the setU(m) = f([Vn]zn)1n=0 : z0 2 V0, 8n � 0 we have �n(zn) = zn+1g:(55)The local chart is de�ned as the mapping ([Vn]zn) 7! 	0(z0):(56)In this way we have de�ned an atlas on 0W s(A). It is clear that the transition maps are biholomorphic. Theatlas de�nes a Haussdorf topology on 0W s(A) which is the minimal topology in which all local charts arecontinuous.De�nition 6. (The shift map on the global stable manifold) We de�ne the shift map � : 0W s(A)! 0W s(A)by the rule that (mn) is mapped to (m0n), where m0n = mn+1 for all integer n.This map is a holomorphic map of the Riemann surface 0W s(A) into itself. In the charts introduced byformula 56 of 0W s(A) it is represented by 	1 � �0 � 	�10 . Thus, � is even a local di�eomorphism.We note that the element ([W ]A)1n=0 is a �xed point of �. We will denote this �xed point by A, in spiteof the slight possibility of confusion. Moreover, it is clear that for every point m 2 0W s(A) there is n suchthat �n(m) is in the coordinate neighborhood of A:U(A) = f([W ]�n(z))1n=0 : z 2Wg:(57)In addition, limn!1�n(m) = A:(58)By 0W sN (x) we will denote a subset of 0W s(A) constructed in the same way as 0W s(A), except that N is�xed in the construction. Clearly, we have the following �ltration property:W � 0W s0(A) � 0W s1(A) � 0W s2(A) � : : : ;0W s(A) = 1[N=0 0W sN (A):(59)The equivalence W � 0W s0(A) is given by a mapping which maps a point z 2 W to ([W ]zn)1n=0, wherezn = �n(z).



28 Marek RychlikDe�nition 7. (The linearizing parameter on 0W s(A)) The map 	 : W sloc(A) ! C induces an analytic map : 0W s(A)! C de�ned by the formula (([Vn]zn)1n=0) = ��N	(zN );(60)where N is such that Vn � W and �n = � for all n � N . This map will be called the (global) linearizingparameter on 0W s(A).Thus, we have the following commuting diagram of Riemann surfaces and holomorphic maps:0W s(A) ��! 0W s(A)??y ??y C ��! C(61)We note that  cannot be expected to be a covering map, due to the propagation of singularities underiteration. We note that as the chains of curves Vn become longer and longer, we may encounter numeroussingularities of R. However, we will see that the set of singularities is discrete and all of them are of algebraictype. Moreover, we will prove for the equichordal relation that  j �1(B(0; �)) is a covering map of a diskB(0; �) if only � is su�ciently small.5.10. The branched stable manifold of the equichordal relationOne way to construct the branched stable manifold for the equichordal relation is obtained by a carefulparameterization of the unbranched stable manifold. The following lemma follows this approach. Althoughthe technique used in its proof is restricted in its scope to relations whose local branches can be explicitlywritten down, it has the advantage of relative simplicity over more general methods of commutative algebra.Theorem 6. For every N � 0 there exists � > 0 and a �nite subsetBN = nZ(N)1 ; Z(N)2 ; : : : ; Z(N)MNo � B(0; �0);(62)a collection of integer numbers ��(N)j �MNj=1, �j =2 f0; 1g and for every j 2 f1; 2; : : : ;MNg a collection offunctions (�(N)j;l (�))Nl=0, each function �(N)j;l de�ned on a punctured disk 0 < j�j < �1=�(N)j , such that1. for j = 1; 2; : : : ;MN and l = 1; 2; : : : ; N the function �(N)j;l is analytic with the exception of an isolatednon-essential singularity at 0;2. for every � the sequence zl = �(N)j;l (�), l = 0; 1; : : : ; N , solves the di�erence equation 10; the point withprojective coordinates (zN�1; zN ) is in W =W sloc(A) and it is equal to��Zj + ��(N)j � ;3. for every Z 2 B(0; �0), Z =2 BN , there is � > 0 and 2N sequences of meromorphic functions �l(�),l = 0; 1; : : : ; N , de�ned on B(Z; �) such that the point �(�) represented in projective coordinates is(�N�1(�); �N (�)) and for n = 1; 2; : : : ; N � 1 we have:�n�1(�) = �n(�) + 11ap1 +�n(�)2 � 1�n(�) ��n+1(�) ;(63)for all possible choices of a branch of p�; moreover, none of the equations



A solution to the Equichordal Point Problem 29�n(�) = �i;�n(�) = �n+1(�);1ap1 +�n(�)2 = 1�n(�)��n+1(�) :(64)holds for � 2 B(Z; �) and n = 0; 1; : : : ; N�1; every germ ([Vn]wn) 2 0W sN (A) can be uniquely representedby a sequence of varieties (Vn)Nn=0, where for n = 0; 1; : : : ; N the curve Vn is parameterized by the equationszn = �n(�), zn+1 = �n+1(�), where (�n)Nn=0 is one of the sequences de�ned above.Proof. The proof is by induction on N .For N = 1 the set B0 = ;. For every Z 2 B(0; �0) we may de�ne �0 and �1 using the equation:(�0(�); �1(�)) = �(�):We note that we have �1(��) = �0(�), which follows from the derivation of equation 52. Both functions havea pole at � = 0. Thus, already for N = 0 we run across meromorphic functions.Let us suppose that the statement of the theorem is proved for some N � 0. The function sequences(�l)N+1l=0 need to be constructed to satisfy the di�erence equation 10. The part of the sequence (�l)N+1l=1 canbe directly taken from the statement of the lemma for N , except we shift the indices by 1 to the right. Wewould like to de�ne �0 in terms of �1 and �2, using formula 63 for n = 1. Of course, we have a choice of thebranch of p1 +�1(�)2, and thus generically the number of solutions over a point Z should double at everystep of induction.Formula 63 can be also applied to extend the sequences (�(N+1)j;l )N+1l=1 for j = 1; 2; : : : ;MN (again, wehave shifted the index l by 1, i.e. �(N+1)j;l = �Nj;l�1 for l = 1; 2; : : : ; N + 1). It is clear that the formula is notapplicable at certain points, and these will have to be added to the branch point set BN . We will describethe addition process in detail.The extension formula fails for the points � for which one of the following equations holds:�0(�) = �i;�1(�) = �2(�);1ap1 +�1(�)2 = 1�1(�) ��2(�) :(65)A priori, it could happen that one of these equations is satis�ed identically. This would require a majormodi�cation of our argument. In our future discussion of other algebraic relations we will refer to thissituation as the degenerate case. However, we will prove directly, that none of the three equations 65 is satis�edidentically. The idea is to carry the x-coordinate across the induction. Thus, for every n = 0; 1; : : : ; N wede�ne the function Xn(�) = a2 �n�1(�) +�n(�)�n�1(�)��n(�) :(66)We know that these functions satisfy the recurrence relations:Xn+1(�) = �Xn�1(�) + �n(�)p1 +�n(�)2(67)Of course, we must use the same branch of p1 +�n(�)2 in both equations 63 and 67. The proof of 67 isa simple calculation. For simplicity we use the notation xn = Xn(�) and zn = �n(�). Based on the formulaxn = (a=2)(zn�1 + zn)=(zn�1 � zn) we obtain:xn + xn+1 = a2 �zn�1 + znzn�1 � zn + zn + zn+1zn � zn+1�= a2 �1 + 2znzn�1 � zn � 1 + 2znzn � zn+1�



30 Marek Rychlik= a2 2znap1 + z2n= znp1 + z2n :(68)Now we have mentioned that for Z = 0 the functions �0 and �1 have a simple pole at Z = 0. Thus thefunction X1(�) has a removable singularity at 0 and X1(0) = �a. We also have the following formula�n�1(�) = a2 Xn(�) + a2Xn(�) � a2 �n(�):(69)This formula will be used in the induction step to deduce the properties of �0(�) from those of X1(�) and�1(�).Thus, as a part of induction we include the following statements:1. 0 =2 BN ;2. for Z = 0 and all n � N the function Xn(�) has a removable singularity at � = 0 and moreover,Xn(0) = �1=2 + r, where r is an integer;3. for Z = 0 and for all n � N the function �n(�) has a simple pole at � = 0.Finally, we carry across the induction step the statement that for all n � N and Z =2 BN the function �n(�) isa direct continuation along some path of one of the branches constructed over Z = 0, using only the functionelements constructed in step N over points Z =2 BN . This is enough to show that none of equations 65 canbe satis�ed identically.Indeed, if this were not the case then those equations would be satis�ed by one of the functions �n(�)constructed over Z = 0. It is clear that the equation Zn(0) = �i does not hold, as Zn(�) is real for real �.The equation �0(�) = �1(�) is not satis�ed identically, because the value of Xn(0) = �1=2 + r impliesthat the residue Res0�0 = X1(0) + a2X1(0)� a2 Res0�1(0):(70)Hence, the property that �n has a simple pole at 0 carries across the induction step. Also Res0�0 6= Res0�1and �0(�) = �1(�) cannot hold identically.A similar residue argument shows that the equation1ap1 +�0(�)2 = 1�0(�)��1(�)does not hold identically. Indeed, calculating the residues of both sides of the equivalent equationap1 +�0(�)2 = �0(�)��1(�)at 0 we obtain: � aRes0�0 = Res0�0 � Res0�1:(71)Hence, we would have Res0 �0 = Res0�11� a :(72)Equation 70 and the equality X1(0) = �1=2 + r imply�1=2 + r + a=2�1=2 + r � a=2 = 11� a:(73)This equation implies after some manipulations that 2r+ a� 1 = �2. Thus, a is an odd integer. Hence thereis no solution in the range of parameters of interest. Hence, we obtain a contradiction with the assumptionthat equation 71 is satis�ed identically.



A solution to the Equichordal Point Problem 31Hence, in the induction step we have a �nite set of solutions to the system of equations 65 to deal with.Only the points �0 where �1(�0) = �i may lead to new branch points. If �0 does not satisfy this equationbut it satis�es either the �rst or third equation alone then a pole appears in �0 and this creates no problem.If �1(�0) = �i then we consider the Laurent series of 1 +�1(�)2 at �0:1 +�1(�)2 = 1Xs=� cn(� � �0)s = (� � �0)�R(�)(74)where c� 6= 0 and R is an analytic function such that R(0) 6= 0. If � is even then there is no need to introducea new branch point. Indeed, there exist two di�erent branches meromorphic in a disk about �0:p1 +�1(�)2 = �(� � �0) �2pR(�):(75)However, when � is odd, we need to introduce a new branch point. First, we introduce a new parameter �such that � = �0+ �2. We rewrite the functions �n for n = 1; 2; : : : ; N in terms of the new parameter �. Withrespect to this parameter we have 1 +�1(�)2 = �2�R(�0 + �2):(76)Again, we may write down two distinct meromorphic branches:p1 +�1(�)2 = ���pR(�0 + �2):(77)Plugging this expression into 63 for n = 1 we obtain a meromorphic function �0(�). If Z =2 BN then wesimply add �0 to BN+1 (while keeping all the previously added points and starting with BN+1 = BN ). Wesimply rename � ! � and obtain the branches (�l) over �0.If we are performing the extension construction for the sequence of functions �l = �j;l over the alreadyconstructed branch point Z(N)j 2 BN then we need to change the parameter slightly. If �0 6= 0 then weneed to introduce a new parameter � so that Z(N)j + (�0 + �2)�(N)j = Z(N)j + ��(N)j0 + �2, while addingZ(N+1)j0 = Z(N)j + ��(N)j0 to BN+1. Indeed, the new � is calculated from the formula:� =r(�0 + �2)�(N)j � ��(N)j0 ;(78)which de�nes two branches locally biholomorphic at 0. It is clear that if �0 = 0 then no new branch point iscreated but �(N+1)j = 2�(N)j .Theorem 6 gives us a straightforward way to de�ne the branched stable manifold of the equichordal relationsimply by an abstract construction of adding certain points to the unbranched Riemann surface. The readerwill observe that Theorem 6 de�nes an atlas on 0W s(A) compatible with the atlas constructed previously. Thenewly added points are in 1:1 correspondence with the germs of functions (�(N)j;l )Nl=0, where N varies from 0to 1, j = 1; 2; : : : ;MN and l = 0; 1; : : : ; N . Let us denote the points by bN;j;l although some identi�cationsmay be necessary. The point bN;j;l has a coordinate neighborhood UN;j;l consisting of bN;j;l and all elementsin 0W sN (A) constructed by taking a �0 2 B(0; �) and considering the sequence of curves Vn for n � Nde�ned by a parameterization zn = �n(�), zn+1 = �n(�) and for n � N by Vn+1 = �(Vn). All possiblegerms ([Vn]wn) are considered, where wn is the point of P21 described by projective coordinates (zn; zn+1)where zn = �n(�0) and zn+1 = �n+1(�0). The poles of meromorphic functions yield 1. The local chart atbN;j;l sends bN;j;l to 0 and the just de�ned sequence ([Vn]wn) to �0. We prove in a standard manner thatW s(A) constructed in this way is a Riemann surface. It is possible to writeW s(A) = 0W s(A) [ fbN;j;lg(79)where the second component is a discrete subset of W s(A). The topology on W s(A) is the minimal topologyin which all charts are continuous.



32 Marek RychlikThe shift map � : 0W s(A)! 0W s(A) extends toW s(A) by continuity. The resulting map is holomorphic.However, it is no longer true that � is locally biholomorphic. It is easy to see that bN;j;l becomes a criticalpoint of order 2. It is still true that limn!1 �n(m) = A for every m 2W s(A).The linearizing parameter extends by continuity to a function  : W s(A) ! C . It still has the property � � = � .We also have a �ltration of W s(A) by open subsets W sN (A) which are obtained by adjoining the branchpoints bN;j;l to 0W sN (A). It is also clear that W sN (A) is compact in W sN+1(A). Moreover, at the expense ofslightly decreasing �0 we may assume that no bN;j;l lies on the boundary of W sN (A) which in this case will bea real-analytic curve. Thus, we may think of W sN (A) as a Riemann surface with an analytic boundary.The reader interested in a more general construction of a stable manifold may consult the Appendix,section C for some comments.5.11. The shadow mapThis map is somewhat useful in relating the constructions performed on the Riemann surface W s(A) withthe dynamics of the relation R on the space X . It is de�ned by the formulaSh (([Vn]zn)1n=0) = z0:(80)Clearly, Sh :W s(A)! X and Sh(W s(A)) � 1[n=0R�n(W sloc(A)):(81)Remark 4. In general the equality may not hold. It is a question whether for the equichordal relation the equal-ity does hold. This property is equivalent to the question whether the preimages R�n(W sloc(A)) pass throughthe point (1;1) in projective coordinates. This is the only point x 2 X such that dim(�1jR)�1(x) � 0 (it is= 1). In particular, the map �1jR is not what is called a �nite branched covering (cf. [8]). If R�N(W sloc(A))passed through (1;1) then R�N�1(W sloc(A)) would have components which are not in Sh(W s(A)).5.12. The global unstable manifoldIf A is an unstable �xed point then we may carry out a construction of the Riemann surface W u(A) simplyby replacing R with R�1 and changing the order of coordinates a number of times. It will be convenient toassume that W u(A) consists of sequences of germs (mn)0n=�1 for reasons that will be clear soon. We mayconstruct the shift map and the linearizing parameter as well. The shift map is the shift to the right, if theconvention just introduced is observed.5.13. The stable fanLet us consider the set S� =  �1(B(0; �)):(82)We have promised to show that  jS� is a covering map of B(0; �) if � is su�ciently small. We set out to dojust that.Let D� = �(B(0; �)) be the image of a small disk in the complex plane. Let us consider the �-stable set oforder N : Fs�;N(A) = R�N (D��N (A)):(83)In view of F�1(D�N+1�) = D�N� we have the following �ltration property:Fs�;0(A) � Fs�;1(A) � � � �(84)We de�ne the �-stable set of the point A de�ned as the set



A solution to the Equichordal Point Problem 33Fs� (A) = 1[N=0Fs�;N(A):(85)The stable set is closely related to the construction of the global stable manifold. We clearly haveFs� (A) = Sh( �1(B(0; �)));Fs�;N (A) = Sh( �1(B(0; �)) \W sN (A)):In the case when R is a graph of an ordinary di�eomorphism the stable set of a �xed point reduces to D�and thus it does not contribute anything interesting to the theory. However, as we will see, the stable set ofan equichordal relation is quite interesting, and it will be instrumental to our solving the Equichordal PointProblem.In the case of the equichordal relation the �-stable set can be described more constructively by carefullyparameterizing the component disks. Let for � 2 f�1; 1gF�(x; y) =  �x+ � x� a2p(x� a2 )2 + y2 ;�y + � yp(x� a2 )2 + y2!(86)be the local branch of R. Let us consider sequences � = (�0; �1; : : : ; �n�1), where �j 2 f�1; 1g. For every suchsequence we may consider the compositionF� = F�n�1 � F�n�2 � : : : � F�0 :(87)We may also consider the following compositions:�� = F�1� � � � �n:(88)Let E be the set of all in�nite sequences (�n)1n=0, where �n 2 f�1; 1g for every n � 0 and for su�cientlylarge n we have �n = +1. Due to the property F�11 � � � � = � we have the stability property: if �(n) is thesubsequence (�0; �1; : : : ; �n�1) of the sequence � then for su�ciently large m;n we have��(m) = ��(n) :(89)The common limit value will be denoted ��. We note that an alternative de�nition of Fs� (A) isFs� (A) = [�2E��(B(0; �)):(90)De�nition 8. (The stable fan) The family of mappings (��)�2E is called the stable fan of the �xed point A.Let � = (1; 1; 1; : : :). Clearly � 2 E.De�nition 9. (Characteristic set of the stable fan) Let Ê � E be the set of those sequences � for which��(0) = A. For every � 2 Ê the number �� �0�(0) = �� � �0�(0):(91)is called the characteristic value of the element �.The characteristic set of the stable fan is the set of all characteristic values:M = f�� : � 2 Êg:(92)We have the following simple lemma:Lemma 13. The �� is independent of the choice of the initial parameterization �. Moreover, M is a mul-tiplicative semi-group with unity �� = 1.



34 Marek RychlikLater on we will calculate M. We will see that it is a discrete subset of ]0; 1] with 0 being an accumulationpoint. There is a di�erent de�nition of ��, too. One takes a �nite, su�ciently long initial subsequence �(N) oflength N of �. Then one calculates the eigenvalue ~��(N) of DF�(N) in the vertical direction. Subsequently onede�nes �� = ~��(N)�N :(93)This de�nition produces the semi-group property even quicker. Moreover, it tells us that the characteristicvalue serves as a comparison of the expansion in the vertical direction for various branches of RN to that ofthe branch FN .Let � : E ! E be the shift map to the left:�((�0; �1; : : :)) = (�1; �2; : : :):(94)It will be useful to de�ne a set EN for every N 2 Z+ as consisting of all sequences � 2 E such thatCardfn 2 Z+ : ��n(�)(0) 6= Ag � N:(95)It is obvious that �(EN ) � EN and that E = 1[N=0EN :(96)The next theorem shows a sort of compactness for the stable fan. The proof is an elaboration of the existencetheorem for invariant curves.Theorem 7. There is a constant �0 with the following properties:1. for all � 2 E the disk B(0; �0) is in the domain of ��;2. for any sequence ��(n)�1n=0 of elements of E the following conditions are equivalent:a) diam(��(n)(B(0; �0)))! 0 as n!1;b) for every N 2 Z+ there is n0 2 Z+ such that for all n � n0 we have �(n) =2 EN ;3. if ��(n)�1n=0 is a sequence of elements of EN for some �xed N 2 Z+ then exactly one of the following twostatements is true:a) there is a number M independent of k such that for all n we have �M (�(n)) = �; in this case there isa �nite set E0 � E such that all elements of the sequence (�(n)) belong to E0;b) there is a sequence (nk) such nk %1, a number � 2 M, � < 1, and � 2 EN such that ��(nk) ! �� ��in the uniform topology of holomorphic mappings on B(0; �0).The semi-group M is a discrete subset of ]0; 1] with 0 being an accumulation point. Furthermore, if for somesequence � 2 E we have �� = 1 then � = �.Proof. It will be convenient to use the semi-projective coordinate system, introduced in subsection 3.6. Aswe know, the equichordal map represented in this coordinate system is (x;w) 7! (x0; w0) wherex0 = �x+ 1p1 + w2 ;w0 = x0 + ax0 � aw(97)with the understanding that we calculate x0 �rst and use it in the second equation.Let us �x � 2 E and consider the sequence of curves �n = ��n(�). Clearly, �n = F�1�n � �n+1 � �.We will study iterations of a curve given parametrically as�n(u) = (xn(u); wn(u)):We have the following recurrence relations, following from formulas 97:



A solution to the Equichordal Point Problem 35wn(u) = xn+1(�u)� axn+1(�u) + awn+1(�u);xn(u) = �xn+1(�u) + �np1 + wn(u)2 :(98)We note that for su�ciently large n we have �n = �n+1. Therefore for large n the curves �n admit estimateswhich are uniform in n. It is our goal to derive uniform estimates for all n.Let us assume that the following inequalities hold within a disk B(0; �) for � < �0:jxn(u)� xn(0)jjuj2 � pn(�);jwn(u)jjuj � qn(�)(99)for all u 2 B(0; �). Here pn(�) and qn(�) are two functions de�ned for all � < �0. We will skip the dependenceon � in several estimates. However, the reader should note that the dependence on � is important in thisproof.Let us pick C1 in such a way that for jwj < 1=2 we have���� 1p1 + w2 � 1���� � C1jwj2:(100)If � is small enough then we have the following inductive estimate:pn � pn+1�2 + C1q2n:(101)We also have xn+1(u)� bxn+1(0)� b = 1 + xn+1(u)� xn+1(0)xn+1(0)� b :(102)Now, we observe that jxn+1(0)� bj � 1=2� b for all n. Let C2 = 1=(1=2� b). We obtain1� C2jxn+1(u)� xn+1(0)j � ����xn+1(u)� bxn+1(0)� b ���� � 1 + C2jxn+1(u)� xn+1(0)j:Hence, we obtain the following estimate:����xn+1(u)� bxn+1(u) + b ���� � ����xn+1(0)� bxn+1(0) + b ���� 1 + C2jxn+1(u)� xn+1(0)j1� C2jxn+1(u)� xn+1(0)j� ����xn+1(0)� bxn+1(0) + b ���� 1 + C2pnjuj21� C2pnjuj2 :(103)Thus, we immediately obtainqn(�) � � ����xn+1(0)� bxn+1(0) + b ���� 1 + C2pn+1(�)�21� C2pn+1(�)�2 qn+1(��):(104)We note that the expression �n = � ����xn(0)� bxn(0) + b ����(105)is uniformly bounded by a constant � < 1, unless xn(0) = �1=2, when it is equal to 1. This is a specialextreme property of the �xed point of the equichordal relation and our proof relies upon this fact. It followsfrom the fact that xn(0) = �1=2 for su�ciently large n and xn(0) = �xn+1(0)� 1. Thus xn(0) = �1=2 + rwhere r is an integer. Indeed, �n is maximal when xn(0) is negative and smallest in absolute value, i.e. whenxn(0) = �1=2.In order to set up an inductive estimate, let us suppose that for some positive constants P;Q; �Q we have



36 Marek Rychlikqn(�) � �Q 1Yl=n+1 1 + C2P�l�21� C2P�l�2 1Yl=n+1 �l;pn(�) � C1Q2 1Xl=n �2l:(106)We note that both products converge; the second one due to the fact that �l = 1 for large l. The inductiveestimates 101 and 104 imply that if the inequalities 106 are valid for n = n+1 then they are also valid for n,as long as pn+1(�) � P and qn+1(�) � Q. This last condition can be accomplished by an appropriate orderof choice of constants. First we pick �Q so that qn � �Q for large n. Then we set Q = 2 �Q. Then we set P sothat pn � P for su�ciently large n and P � C1Q2 1Xl=0 �2l:(107)Finally, we decrease �0 from its original value so that1Yl=1 1 + C2P�l�201� C2P�l�20 � 2(108)and that Q� � 1=2 so that jwnj � 1=2 in order to ensure that the inequality 100 is satis�ed.Now it is easy to see that the inequalities 106 hold by induction. Also, it is a consequence of the proofthat pn � P and qn � Q for all n � 0. We note that these estimates are uniform in �. Furthermore, we cansee that if xn(0) 6= �1=2 for at least N values of n then we have Q1l=0 �l � �N and our estimates produceql � �N�lQ for such sequences and l = 0; 1; : : : ; N . These estimates in turn producep0 � NXl=0 �2lq2l + �2NpN+1� �2NP + NXl=0 Q2�2(N�l)�2l:(109)Thus, both p0 and q0 tend to 0 uniformly in N , which producesdiam(��(B(0; �)))! 0uniformly in N . Thus, if we have a sequence of � such that diam(��(B(0; �))) 6! 0 for all its subsequencesthen all terms of this sequence remain in a set EN for some �xed N .It is clear from our de�nitions that the characteristic value of the sequence � admits the following expres-sion: �� = 1Yn=0 �n:(110)This explicit formula leads to obvious proofs of all claims concerning the characteristic set M. There is oneissue remaining, that of convergence of a subsequence of the sequence ��(n) in the case when all �(n) are inEN for some �xed N 2 Z+. The idea is to apply the Invariant Manifold Theorem over the long stretches of lfor which �(n)l = +1.In order to select a subsequence nk appropriately we will consider an abstract procedure of decomposinga sequence � 2 E into a concatenation of sequences called trips and gaps. If � and �0 are two sequences, the�rst one �nite and the second one either �nite or in�nite then ��0 will denote their concatenation. For everysequence � 2 E we will construct a decomposition� = k�kk�1 � � � 1�1�(111)where all component sequences but � are �nite. It is possible that k is an empty sequence. The sequences�j will be called trips and k gaps. This terminology is justi�ed by the connection with the structure of the



A solution to the Equichordal Point Problem 37returns of the point A to itself, when subjected to the action of consecutive branches F�j . We are about togive a precise de�nition of �j and j . We require that each trip ends in -1, i.e.�j = (�lj ; �lj+1; : : : ; �rj )(112)where �rj = �1. Furthermore, we require that A is a �xed point of the compositionF�rj � F�rj�1 � � � � � F�lj+s(113)where 0 � s � rj � sj i� s = 0, with the exception of j = k, when we can have an un�nished trip for whichA is not a �xed point for any s, or empty trip. On the other hand, we require that j = (1; 1; : : : ; 1) for all j,with the aformentioned exception of k being an empty sequence, and �k being either �nished or un�nished.It is easy to see that these conditions determine j and �j uniquely.Let j�j denote the length of a given �nite or in�nite sequence. Thus, j�j j = rj � lj + 1.Now, let us suppose that we have a sequence (�(n))1n=1 of elements of EN , where N is �xed. If there is anumber M such that for all n we have �M (�(n)) = � then we are done. Thus, we may assume that no suchMexists. This means that if �(n) = (n)kn � (n)kn (n)kn�1 � � � (n)1 � (n)1 �(114)is the decomposition into trips and gaps then knXj=1 j(n)j j ! 1(115)as n!1. We note that Pknj=1 j� (n)j j � N .By choosing a subsequence we may assume that kn = k is �xed for all n. Let us de�ne � 2 f1; 2; : : : ; kgas the maximal natural number in f1; 2; : : : ; kg such that supn j(n)� j =1. Again by choosing a subsequencewe may assume that j(n)j j ! 1 as n ! 1. Also, for j = � + 1; � + 2; : : : ; k we de�ne l(n)j = j(n)j j andlj = supn l(n)j <1.Furthermore, we may choose a subsequence so that all trips are independent of n. Indeed, each trip doesnot exceed length N and there are at most N trips, and thus the family of all trips is �nite. We may alsoassume that the trips (n)j do not depend on n for j = �+ 1; �+ 2; : : : ; k. Thus, we obtained a subsequencein which the number of trips is �xed, the trips themselves are �xed, and the only thing changing with n isthe size of gaps l(n)j for j = 1; 2; : : : ; �� 1, with l(n)� !1 as n!1. We will call (n)� the big gap.In order to avoid excessive subscripting and superscripting we are going to skip the dependence upon n inseveral formulas below. Let us temporarily use the notation � = �(n) with the tail � discarded. LetM = j�j andlet lj = l(n)j . With the decomposition of � into trips and gaps we may associate a grouping of the compositionF� = F�M�1 � F�M�2 � � � � � F�0 =T1 �G1 � � � � � T��1 �G� � T� �G�+1 � � � � � Tk �Gk :In this formula Tj is the composition of the branches corresponding to the trip �j with the indices taken indecreasing order. The map Gj = F lj .We turn our attention to the presence of the big gap. We introduce the two mappingsH = T1 �G1 � � � � � T��1K = T� �G�+1 � � � � � Tk �Gk :Moreover, we note that K does not depend on n, while H does. Hence, F� = H �G� �K. This grouping maybe used to represent �� in the following way:�� = F�1� � � � �M= K�1 � (G�1� � (H�1 � � � �r) � �s) � �t:



38 Marek RychlikThe numbers r, s and t are de�ned as followsr = ��1Xj=1(j�j j+ jj j);s = j�j;t = kXj=�+1(j�j j+ jj j)are the lengths of the corresponding segments. Moreover, s ! 1 as n ! 1 and t is constant as a functionof n.We note that � = H � � � �r is of the form ��0 , where �0 is a certain sequence. Thus, according to ourprior estimates, it admits uniform bounds of the formjx(u)� x(0)jjuj2 � P;jw(u)jjuj � Qwhere � (u) = (x(u); w(u)). Moreover, we see that� 0(0) = ��0�0(0)(116)and ��0 = ��1Yj=1 ��j(117)is an element of M independent of n and ��0 < 1. We set � = ��0 .It follows from the Invariant Manifold Theory that G�1� � � � �s ! � � c in the uniform topology ofholomorphic maps, where c 6= 0 is some constant. The convergence is uniform with respect to the size of thegap s. By comparing derivatives at 0 we can see that c = �.Finally, we note that the composition K�1 � (G�1� � � � �s) � �r converges to K�1 � (� � �) � �r which isof the form �� � � because of � � � = � � �. Clearly, � = ���+1 � � � �k.The proof is complete.Corollary 3. Let S� =  �1(B(0; �)) �W s(A). The map  jS� : S� ! B(0; �) is a trivial covering map. Letus consider the map � : E � B(0; �) ! S� which maps the pair (�; z) to the sequence of germs ([Vn]zn)1n=0,where Vn = ��n(�)(B(0; �)) and zn = ��n(�)(z). This map establishes a global product structure for the map jS�.It will be useful to introduce the following notation:S�;� = �(f�g �B(0; �)):(118)This set can be pictured as a slice of the Riemann surface W s(A) lying above the ball B(0; �) and indexedby �.Let us �nish the discussion of the stable fan with an interpretation that we should have in mind forTheorem 7. Let us consider the set  �1(z) where z 2 B(0; �). This set is discrete, due to the productstructure of the map  jS�, in W s(A) and it consists of points m�, indexed by the elements � 2 E. However,the \shadow" points Sh(m�) = ��(z) do not form a discrete set, but they may accumulate in only a veryspecial way. They may only converge to a point which is a shadow of another point m0� of W s(A). This pointdoes not lie in the �ber  �1(z) but in the �ber  �1(� � z). This is just a more intuitive way of describing theconvergence ��(n) ! �� � �.It will be seen later on that the fact of crucial importance is that the linearizing parameter of the \limit"m0� has modulus strictly smaller than the modulus of the points m�.



A solution to the Equichordal Point Problem 39The reader should observe that the reason for the just described behavior of the stable fan of the equichordalrelation is the fact that the only way for a trajectory of the equichordal relation to approach the �xed pointA at a rate �n up to a constant factor is to follow the branch F = F+ with the exception of a �nite numberof iterations. In other words, the fastest way to get to A is to follow the branch F = F+.5.14. Separation of stable and unstable setsLet us �nish this section with one corollary of the proof of Theorem 7. Let us consider both stable andunstable sets. Thus, we have the stable and unstable sets of A1 and A2, denoted by Fs� (A1) and Fu� (A2)respectively.Lemma 14. There is a number � > 0 such thatFs� (A1) \ Fu� (A2) = ;:(119)Proof. From the proof of Theorem 7 we know that for small � the diameters of ��(B(0; �)) are uniformlysmall for all � 2 E. Let us pick � in such a way that diam(��(B(0; �))) < 1=2 for all � 2 E. Also, weknow that ��(0) = (xn(0); 0) where xn(0) = �xn+1(0) + �n and xn(0) = �1=2 for large n. We prove byinduction that xn(0) = �1=2 + 2r where r 2 Z. If a similar analysis is carried out for the unstable fan thenxn(0) = +1=2 for large n, and thus xn(0) = 1=2+ 2r. Thus, we see that Fs(A1) is in a 1=2-neighborhood ofthe set f�1=2 + 2r : r 2 Zg and Fu(A1) is in a 1=2-neighborhood of the set f1=2 + 2r : r 2 Zg. Thus, thestable and unstable sets are disjoint.6. Heteroclinic connections of dimension 1Informally, a heteroclinic connection is an invariant curve which joins two �xed points. When we are dealingwith algebraic relations, the multivaluedness introduces a number of issues which need to be resolved. Thisis the subject of the current section.6.1. New notationsIn the previous section we chose to develop the theory of invariant curves with a stable �xed point in mind.We just mentioned the case of an unstable �xed point briey. In the current section both a stable andunstable �xed point will appear simultaneously and extra notational conventions will have to be applied inorder to avoid clashes. Thus, the stable �xed point will be denoted by A1, its stable manifold by W s(A1);the global linearizing parameter is a function  1 : W s(A1) ! C and the stable fan is (�s�)�2E. The unstable�xed point will be denoted by A2, its unstable manifold by W u(A2); the global linearizing parameter is 2 : W u(A2) ! C and the unstable fan is (�u� )�2E0 . We recall that E consists of sequences (�n)1n=0, whileE0 of sequences (�n)0n=�1, where �n; �n 2 f�1; 1g. We also introduced notation S� =  �11 (B(0; �)). Thecorresponding notation for the unstable point will be U� =  �12 (B(0; �)). We have also de�ned S�;� for � 2 E.In a similar way we de�ne U�;� for � 2 E0.6.2. Rigorous de�nitionsLet A1 and A2 be two �xed points of an algebraic relation R. Let F1 and F2 be the local branches of R atA1 and A2, respectively, such that Fi(Ai) = Ai for i = 1; 2.Let W1 and W2 be two local invariant curves of F1 and F2 passing through A1 and A2, respectively.We will assume that Ai is a hyperbolic �xed point of Fi for i = 1; 2. Moreover, we will assume that fori = 1 (i = 2) the point A1 (A2) is attracting (repelling) within the curve W1 (W2). Thus F1(W1) � W1 andF�12 (W2) �W2.
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A1 A2Fig. 11. Heteroclinic connectionDe�nition 10. (Heteroclinic connection) We will say that a heteroclinic connection exists between A1 andA2 i� there exist local curves V1 � W1 and V2 � W2, a natural number N and a regular local branch � ofRN such that V1 = �(V2).Of course, under the assumptions of this de�nition, we may construct two Riemann surfaces W s(A1) andW u(A2). Our next goal is to construct a third Riemann surfaceH which can be constructed in the presence ofa heteroclinic connection. In classical dynamical systems theory we may de�ne this surface as H =W s(A1)\W u(A2). However, the intersection does not make sense in the context of our de�nition. The followingdiagram, which is somewhat analogous to this de�nition, exists:������/ SSSSSSwp2W s(A1)p1
H

W u(A2)The construction of H is analogous to our previous construction of W s(A1).De�nition 11. (Unbranched heteroclinic connection surface) The surface 0H as a set consists of sequencesof germs (mn)1n=�1, where each mn is a germ of a curve Vn at a point yn. We will require the followingadditional properties:1. for every n 2 Z there is a unique regular local branch �n of the relation R such that �n(Vn) = Vn+1 and�n(yn) = yn+1;2. for su�ciently large n we have Vn �W sloc(A1) and �n = F1;3. for su�ciently large negative n we have Vn �W uloc(A2) and �n = F2.The remaining stages of the construction of H are somewhat analogous to those of W s(A1), with the obviousmodi�cations resulting from the fact that we use double-sided sequences of germs. We note that the complexstructures can be pulled back from either W1 or W2 and they coincide.6.3. Adjoining branch pointsOne thing that is worth some discussion is the procedure for adjoining branch points to 0H in order to obtainthe Riemann surface H. We will attempt to give a natural construction and explain the motivation behind it.



A solution to the Equichordal Point Problem 41We consider the two mappings p1 : 0H !W s(A1) and p2 : 0H !W u(A2) de�ned by the formulas:p1((mn)1n=�1) = (mn)1n=0;p2((mn)1n=�1) = (mn)0n=�1:(120)Let us consider the map p = (p1; p2), where p : 0H ! W s(A1) �W u(A2). The mapping p provides a holo-morphic injection of 0H into the productW s(A1)�W u(A2). However, the image p(0H) is not a holomorphicsubvariety of the variety W s(A1)�W u(A2). This is due to the fact that we added branch points to W s(A1)and W u(A2). It is not di�cult to check that p(0H) is a subvariety of the open subset 0W s(A1) � 0W u(A2)of W s(A1)�W u(A2).The main objective is to adjoin branch points so that the map p extends to H and the set H = p(H) is asubvariety of the product W s(A1)�W u(A2). The way that we go about this problem is to �rst construct Has H = f(m; ~m) 2 W s(A1)�W u(A2) : Sh1(m) = Sh2( ~m)g:(121)As Shi are holomorphic, this de�nition exhibits H as a holomorphic variety. Our next step is to explicitlyconstruct equations of the variety H in local coordinates. After this is accomplished, the procedure foradjoining branch points becomes clear.Let us consider a coordinate neighborhood in W s(A1) of m 2 W s(A1). According to Theorem 6, thereexists a sequence �l(�1), l = 0; 1; : : : of meromorphic functions such that the punctured neighborhood of mis given as ([Vn]wn)1n=0, where Vn is a curve in X parameterized in the following wayVn = f(�n(�1); �n+1(�1)) : �1 2 B(0; �)nf0gg;(122)where � > 0, and wn = (�n(�01 ); �n+1(�01 ));(123)where �01 is �xed. We used the symbol �1 instead of � used in the original formulation of Theorem 6.The parameterized curve V0 can be uniquely parameterized as followsz0 = �r11z1 = g(�s11 );where the parameter �1 is expressed in terms of yet another parameter �1 via the formula �1 = �d11 and �1is equivalent to �1 at 0, i.e. the map �1 = �1(�1) is biholomorphic at 0. The function g can be given as aconvergent Laurent series g(u) = P1n=� gnun with the property that GCD(fn : gn 6= 0g) = 1. Moreover,GCD(r1; s1) = 1. Thus, for every point w = (z0; z1) 2 V0 there exists a unique value of the parameter �1which yields that point. The set of data (r1; s1; d1; g) determines the variety V0 in a unique fashion. In otherwords, the map Sh1 is a d1-fold branched covering map at 0 of the curve V0.In a similar fashion we construct a coordinate neighborhood in W u(A2) of ~m 2 W u(A1). There existsa sequence of meromorphic functions ~�l(�2), l = 1; 0;�1;�2; : : : of meromorphic functions such that thepunctured neighborhood of ~m is given as ([ ~Vn] ~wn)0n=�1, where ~Vn is given by~Vn = f( ~�n(�2); ~�n+1(�2)) : � 2 B(0; �)nf0gg;(124)and ~wn = ( ~�n(�02 ); ~�n+1(�02 )):(125)The parameterized curve ~V0 can be uniquely parameterized as followsz0 = �r22 ;z1 = ~g(�s22 );where �2 = �d22 and the map �2 = �2(�2) is biholomorphic at 0. We also have ~g(u) =P1n=~� gnun, GCD(fn :~gn 6= 0g) = 1, and GCD(r2; s2) = 1. Thus, for every point w = (z0; z1) 2 V0 there exists a unique value ofthe parameter �2 which yields that point. The data (r2; s2; d2; ~g) determines the variety ~V0.



42 Marek RychlikThe condition that (m; ~m) 2 H is expressed as the fact that the data (r1; s1; g) and (r2; s2; ~g) are identical,as only then [V0]z0 = [ ~V0]~z0 which allows us to glue the two sequences. Provided that (m; ~m) 2 H , in localcoordinates the variety H is given by the equation �d11 = �d22 in a neighborhood of (m; ~m) de�ned as a productof the neighborhoods considered above.Now let us �nally consider adjoining branch points to 0H in order to obtain H. Let GCD(d1; d2) = d. Wecan see that the equation �d11 = �d22 factors into �d1=d1 = �jd�d2=d2 , j = 0; 1; : : : ; d� 1, where �d is the principalroot of unity of degree d. Thus, the germ of the variety H at (m; ~m) has d irreducible components. For eachsuch component we add one branch point and de�ne a suitable coordinate neighborhood. It is easy to seethat p1 and p2 extend by continuity to the branch points and their corresponding branching orders are d1=dand d2=d).6.4. Various extensions of maps and commuting diagramsWe have observed that the maps p1 and p2 extend to H by continuity. Also, the shift map � : 0H ! 0Hextends by continuity to H. In this subsection we will summarize the connections between various objects ina hopefully helpful manner, using commuting diagrams.The following diagram of holomorphic maps commutes with the understanding that �1 : W s(A1) !W s(A1) is actually a shift to the left and �2 : W u(A2) ! W u(A2) is a shift to the right. The shift � is tothe left, but in the part of the diagram with �2 we must use ��1:
�����/ SSSSSw

�����/ SSSSSw��������������1 ��������������)������������1������������) p2W s(A1)p1
H

W u(A2)
p2W s(A1)p1

H
W u(A2)��1 �2

��1
There are also two linearizing parameters  1 : W s(A1) ! C and  2 : W u(A2) ! C having the followingproperties:  1 � � = �1 1; 2 � � = �2 2:(126)These should not be confused with two linearizing parameters  01 : W s(A1) ! C and  02 : W u(A2) ! Chaving the properties  01 � �1 = �1 01; 02 � �2 = ��12  02:(127)We note that �2 has no inverse, and therefore the second equation cannot be written in the natural way.Clearly, we have  1 =  01 � p1 and  2 =  02 � p2. In the future we will make no notational distinction between l and  0l.7. Global analysis of heteroclinic connectionsIn the previous sections we introduced the global objects that we are going to consider in this section. Theyare the three Riemann surfaces W s(A1), W u(A2) and H, and the various associated holomorphic maps.However, the main technical e�ort so far, as exempli�ed by the proofs of Theorems 6 and 7, has been to



A solution to the Equichordal Point Problem 43establish the local properties of these objects. In the current section the focus of our attention shifts fromlocal to global properties.The goal of this section is to show that if an equichordal curve exists then it is algebraic. The methodsleading to this result are in essence variational.The �nal result settling the Equichordal Point Problem will be proven in the next section. We will showthat the equichordal relation does not have an algebraic invariant curve.7.1. Classi�cation of componentsAccording to the Uniformization Theorem, any simply connected Riemann surfaceM is isomorphic either toP1 or C or D . For brevity, we will call a Riemann surface elliptic, parabolic or hyperbolic, if M is isomorphicto P1, C or D , respectively. If M is connected, but not simply connected, then by fM we denote the universalcovering space of M . We will call M elliptic, parabolic or hyperbolic if fM is elliptic, parabolic or hyperbolic,respectively.It is clear that H has only countably many connected components. The automorphism � : H ! H inducesa permutation of these components. The collection of components decomposes into orbits of this permutation,some perhaps in�nite, and others forming �nite cycles. As all components in a given cycle are isomorphic,it is appropriate to call a given �nite cycle (M0;M1; : : : ;Md�1) or in�nite cycle (: : : ;M�1;M0;M1; : : :)elliptic, parabolic or hyperbolic if it contains a connected component which is elliptic, parabolic or hyperbolic,respectively. When we refer to any cycle, we will denote it by (Ml) regardless of whether it is �nite of not.We observe that the quotient Riemann surface H=h�i is well de�ned. Let (Ml) be an arbitrary cycle in Hand let M = SlMl. It will be convenient to introduce the Riemann surface M 0 =M=h�i � H=h�i. We notethat M 0 = � M0 if the cycle (Ml) is in�nite,M0=h�di if the cycle (Ml) has �nite length d.(128)In any case, M 0 is connected and there is a natural covering map from M0 to M 0. Moreover, H=h�i is theunion of all Riemann surfaces M 0 constructed for all possible cycles.The next lemma is a simple demonstration of the techniques that are going to be routinely used.Lemma 15. There are no elliptic cycles.Proof. Let us suppose that there exists an elliptic cycle and let Ml be the generic component of H belongingto this cycle. Let us consider the two projections p1 : H ! W s(A1) and p2 : H !W u(A2).It is clear that there exists l0 2 Z such that p1(Ml0) is in the connected component W0 of A1 of W s(A1).We note that it is possible that W s(A1) be disconnected.The image of p1(Ml0) does not contain A1. But there is no Riemann surface to which P1 maps by anon-constant transformation, while missing at least one point. In order to show this, let us lift the mapp1jMl0 :Ml0 !W0 to a map ]p1jM l0 :Ml0 ! fW0 where the target Riemann surface fW0 is simply connected.The image is compact and at the same time open. Thus, the Riemann surface fW0 must be P1. But anynon-constant map P1 ! P1 is a rational map and it is onto. Hence, we obtain a contradiction.7.2. The invariant parameterLet us �rst consider the two linearizing parameters  i : H ! C � , i = 1; 2.Lemma 16. The function  : H ! C � de�ned by the formula (m) =  1(m) 2(m)(129)is invariant under the shift map � : H ! H.Proof. Using the linearization properties of  i, we can see that � � = ( 1 � �)( 2 � �) = (�1 1)(�2 2) = (�1�2) :(130)Thus, if we assume that �1�2 = 1, as it is in the case of the equichordal relation, we obtain  � � =  .



44 Marek RychlikThe above lemma justi�es the following de�nition:De�nition 12. The function  =  1 2 is called the invariant parameter on H.It is clear that if �1 and �2 satisfy a resonance relation of the form �k11 �k22 = 1 for some natural numbers k1,k2 then the function  =  k11  k22 is invariant.Lemma 17. There is a number � > 0 such that  (m) � � for all m 2 H.Proof. By Lemma 14 there is � > 0 such that Fs� (A1) \ Fu� (A2) = ;.We will see that for every point m 2 H we have  (m) � �, where � = �2(�1=�2). Let us assume to thecontrary that m 2 H is such that  (m) < �. By applying � an appropriate number of times and using theinvariance of  we may assume that �1�2 � ���� 1(m) 2(m) ���� � �2�1 :(131)In view of j 1(m)jj 2(m)j < � it is clear that j 1(m)j < p�(�2=�1) and j 2(m)j < p�(�2=�1). Thus,p�(�2=�1) > � and � > �2(�1=�2). We obtain a contradiction with our de�nition of �.We note that  6= 0 by de�nition. Thus the function g = 1= is analytic, invariant and bounded. This factwill be of fundamental importance.As we have noted, there is a well-de�ned quotient H=h�i, due to the fact that the map � generates a cyclicgroup h�i = f�l : l 2 Zg that acts freely and discretely on the Riemann surface H. The invariant parameter factorizes and thus we have a function b : H=h�i ! C(132)which is holomorphic on the quotient and such that b �� =  , where � : H ! H=h�i is the natural projection.7.3. Regular and minimal connected componentsOur immediate goal is to characterize a special class of components of H.De�nition 13. (Regular cycle and regular component) A cycle (Ml) of H is called regular i� the invariantparameter  is constant on M0, or equivalently, on M = SlMl. Each connected component of a regularcycle is called a regular component. By Hreg we denote the union of all regular components.Our objective is to show that every regular component is related to a single invariant algebraic curve V . Wereserve the term \algebraic curve" to mean a pure-dimensional algebraic variety of dimension 1. The curveV is characterized by the following properties:1. W sloc(A1) [W uloc(A2) � V ;2. V is the Zariski closure of W sloc(A1) [W uloc(A2).The existence of V will be our concern for most of the remainder of the paper.First we need to show that if Hreg 6= ; then there exists a regular connected component M0 � Hreg suchthat Sh(M0) is contained in an algebraic curve. The method that we are going to apply is a variational one.Second, we will show that H = Hreg, i.e. every connected component of H is regular.Let us de�ne an important constant  = infHreg j j:(133)We have  � � > 0, where � is given by the statement of Lemma 17. There is also another important constant:�max = max(M\ ]0; 1[ ):(134)By Theorem 7 we have �max < 1.De�nition 14. (Minimal cycle and minimal component) A regular cycle (Ml) in Hreg is called minimal if�� jM �� � c, where c is a constant and jcj = . The corresponding component M = SMl is called a minimalcomponent.



A solution to the Equichordal Point Problem 45It is not at all obvious that minimal components exist. Theorem 7 will be used in an essential way in order toprove the existence of minimal components. This theorem provides the compactness needed in a variationalargument.Theorem 8. Let us assume that Hreg 6= ;. Let � =  (Hreg) be the set of all possible values of the invariantparameter  on regular components. The following properties hold:1. the set ~� def=fz 2 � :  � jzj < =�maxg is discrete; in particular, there is only a �nite number of pointsz 2 ~� such that jzj = ;2. for every c 2 ~� there exists only a �nite number of regular cycles (Ml) such that  jM � c whereM = SlMl; for every such cycle the Riemann surface M 0 =M=h�i is compact;3. there exists a minimal component;4. let (Ml) be a cycle in Hreg, M = SlMl and  jM = c where c 2 ~� ; there is a unique invariant algebraiccurve V � X such that Sh(M) � V and V nSh(M) is a �nite set; moreover, W sloc(A1) [W uloc(A2) � V .Proof. Let c(n), n = 0; 1; : : :, be a convergent sequence in C � and let for every n,M (n) � Hreg be a non-trivialregular component on which  � c(n). Let c0 = limn!1 c(n) and let  � jc0j < =�max. We will show that forsu�ciently large n we have c(n) = c0 and moreover, there is only a �nite number of components M � Hregsuch that  jM = c0.Our proof is by contradiction. The idea is to choose a sequence of holomorphic disks D(n) �M (n) whichwill accumulate in X = P21 on a disk D(1) which is a subset of a component M (1) � Hreg such that jM (1) � c00 where jc00j � jc0j�max. This would contradict the de�nition of .Let us pick numbers r1; r2 so that 0 < r1 < r2 < �, r2=r1 > �2 = 1=�1 and a number N such that themap z 7! c0=(�N2 z) maps the annulus A = A(r1; r2) = fz : r1 � jzj � r2g onto itself. The number � must besmall enough, so that the conclusion of Lemma 14 holds and � < �0, where �0 is given by Theorem 7.It is clear that if m = m(n) 2M (n) and n is su�ciently large then there exist numbers l(n)1 and l(n)2 suchthat �l(n)1 (m(n)) 2  �11 (A) and �l(n)2 (m(n)) 2  �12 (A), and moreover l(n)1 � l(n)2 = N independently of n.Let E � E�E0 be the set of these pairs (�; �) that for some n and m(n) 2M (n) we have p1(�l(n)1 (m(n))) 2S�;� and p2(�l(n)2 (m(n))) 2 U�;�, with l(n)1 and l(n)2 de�ned above. We claim that E is �nite. Indeed, if it wherenot the case then by Theorem 7 we could pick a sequence m(n) of elements of M and numbers �1; �2 2 Msuch that1. (�(n); �(n)) 2 E ;2. �s�(n) ! �s�� � �1 where �s� has the same meaning as �� before, and �1 � 1;3. �u�(n) ! �u�� � �2, where �u� means the analogue of �s� for the unstable �xed point and �2 � 1;4. only one of the numbers �1, �2 can be 1.We will see that this implies the existence of a component of Hreg on which  takes a constant value �1�2c0which is smaller in absolute value than .In view of our assumptions, for every n there is a branch F (n) of RN which maps the germ of a curvem(n)l(n)2 to m(n)l(n)1 . Thus, for su�ciently large n there is an open subset Un of A such that for all z 2 Un we have��u�(n)(z); �s�(n) � c(n)�N2 z�� 2 RN :(135)By meromorphic continuation, the above relation holds on the maximal annulus A(r(n)1 ; r(n)2 ) � A, on whichthe left-hand side is de�ned. We have limn!1 r(n)1 = r1 and limn!1 r(n)2 = r2. Passing with n!1 yields��u�� (�1z); �s�� ��2c0�N2 z�� 2 RN(136)for all z 2 A. We have shown that there exists only a �nite subset BN of A such that for z 2 BN and somek 2 f0; 1; : : : ; Ng the point �u�� (�1z) is in the singular set of Rk. Thus, equation 136 allows us to construct



46 Marek Rychlika component M (1) of Hreg such that  jM (1) � c00 where c00 = c0�1�2. Clearly, jc00j � jc0j�max, so we haveconstructed M (1) with the desired properties.Thus we have proven that E is �nite. Furthermore, we have shown that c(n) = c0 for su�ciently large nand that there are only a �nite number of distinct components amongstM (n). We also exhibited a procedureby which to choose a convergent subsequence from a sequence of elements of M 0 = M=h�i. Thus, we haveestablished the compactness ofM 0. Also, there exists a natural number L with the property that for su�cientlylarge n we have Sh(M (n)) � Y whereY = Y (�; L) = Fs�;L(A1) [ Fu�;L(A2)(137)and � = ��N2 , for example. It is easy to see that Y is compact. However, Y is not a variety and we will resortto a more precise construction to show the existence of an algebraic variety V .Let c0 2 ~� . Let (Ml) be any regular cycle on which  � c0. Let M = SlMl and let 0 = jc0j.Let us consider the Riemann surface cM consisting of1. all germs of curves in X of the form m0, where m = (ml) 2M ;2. all branch points added to the germs of the above type;3. �lling in punctures left after the previous two steps.We will further clarify this de�nition by a more straightforward construction cM . In addition, we will showthat cM is compact.The �rst phase of the construction of cM consists in repeating the proof of �nitenes of E for the sequencec(n) = c0. Thus, we consider the set E of all pairs (�; �) such that there exists a sequence of germs m = (ml) 2M for which (ml)0l=�1 2 U�;� and (ml)1l=N 2 S�;�. As we have shown, E is �nite. For every pair (�; �) 2 Eand z 2 A(r1; r2) we have ��u� (z); �s� � c0�N2 z�� 2 RN :(138)Let us consider the set 0� of �nite sequences of germs (ml)Nl=0 of non-singular curves in X such that1. m0 is a germ of a curve z 7! �u� (z) at some point z0 2 A(r1; r2);2. mN is a germ of a curve z 7! �s�(z) at some point zN 2 A(r1; r2);3. z0zN = c0=�N2 ;4. for l = 0; 1; : : : ; N � 1 there is a unique local branch �l of R such that �l(Vl) = Vl+1, where Vl is somerepresentative of ml.Clearly, 0� is a Riemann surface with a real-analytic boundary. There is also a Riemann surface � obtainedby adjoining branch points to 0�. It is easy to see that � is compact.Let for k = 0; 1; 2; : : : ; N consider the set 0�k consist of the germs mk, where (ml)Nl=0 2 0�. Similarly,there exists a surface �k obtained by adjoining branch points. We note that �k � cM in a natural way.It is clear that cMnSNk=0�k is contained in the set� of all germs of the curves z 7! �u�j�(z) or z 7! �s�j�(z),where z 2 B(0; �), (�; �) 2 E and j = 0; 1; : : : ; J , where J is large enough so that �k = 1 and �k = 1 for allk � J . It is clear that � is a �nite union of disks. We have covered cM with a �nite number of compact sets.Hence, cM is compact.Let q1 : M ! cM be the map (ml) 7! m0. Let q2 : cM ! X be the natural projection, i.e. the germ [V ]wis mapped to w under q2. We have ShjM = q2 � q1. Thus, we have the following commuting diagram:������	@@@@@@R
-M q2XSh cMq1



A solution to the Equichordal Point Problem 47Now we are ready to set V = q2(cM):In view of the compactness of cM and analyticity of q2, the image V is a holomorphic subvariety of X , andby Chow's theorem, it is an algebraic curve. The remaining claims of our theorem follow easily. Let us notethat q1(M) = cMnQ, where Q is a �nite set consisting of the germs [�s� ]0 and [�u� ]0, where (�; �) 2 E . Thus,Q is �nite. Hence the set V nSh(M) � q2(Q) is �nite. Our proof is complete.7.4. Algebraic curves associated with other componentsTheorem 8 leads to a classi�cation of all (not only regular) components of H, provided that Hreg 6= ;.Theorem 9. Let us assume that there exists an algebraic curve V such that W sloc(A1)[W uloc(A2) � V . Forevery cycle (Ml) in H there exists a unique algebraic curve V 0 such that1. Sh(M) � V 0 and V 0nSh(M) is �nite;2. V 0 contains V and there is a natural number N such thatV 0 � N[k=0Rk(V ) \R�(N�k)(V );3. V 0 is invariant, i.e. there exists a regular algebraic relationR0 � R \ (V 0 � V 0):Proof. There exists N , a sequence of local branches (�k)N�1k=0 of R and a sequence of non-singular curves(Vk)Nk=0 such that1. V0 �W uloc(A2);2. VN �W sloc(A1);3. for k = 0; 1; : : : ; N � 1 we have �k(Vk) = Vk+1.It is clear that Vk � Rk(V ) \ R�(N�k)(V ). Let V 0 be the Zariski closure of the union of all curves Vkconstructed in the above way. Let R0 � V 0 � V 0 be the Zariski closure of all graphs of the branches �k . It isclear that V 0 and R0 have the desired properties.As the number N can be arbitrary, there may not be a single variety V 0 which will make the conclusion ofthe above theorem true for all cycles. However, examples in which N is unbounded are not known.7.5. A problem concerning the genus of a componentThe proof of Theorem 8 leads to an interesting question.Problem 2. Let M be a non-compact Riemann surface and let � :M !M be an automorphism such thatthe cyclic group � def= h�i acts on M freely and discretely and co-compactly, i.e the quotient C=� is compact.Moreover, let  :M ! C be a holomorphic function on M which satis�es the functional equation � � = � where � 2 C � and j�j 6= 1. Let g be the genus of the compact Riemann surface M=� . Is it possible thatg � 2?



48 Marek RychlikThe answer to this question is almost certainly positive. This can be established by considering the holo-morphic form ! = d = on M=� . The necessary and su�cient condition of the existence of the situationdescribed in the above problem can be formulated in terms of the periods of ! on the generators of the�rst homology group H1(M=�;Z). It is easy to �nd a harmonic form with the desired periods. However, therequirement that ! be holomorphic leads quickly to considerations concerning Teichm�uller spaces and it hasnot been fully resolved.Of course, the above question can come up in considerations concerning complicated heteroclinic connec-tions. The answer in the negative would mean that there cannot be invariant algebraic curves of high genus,and thus it would eliminate a range of possibilities. As we have mentioned, the answer to the above questionis likely to be positive, and thus in the Equichordal Point Problem, the non-existence of invariant curves ofgenus � 1 (which corresponds to genus of M=� being � 2) will have to be proven directly.A di�erent corollary of a positive answer to the above problem is the existence of a 1-dimensional Riemannsurface X of genus g � 2 and an algebraic relation R on X for which the quotient H=h�i is compact. Thereader should observe that most of our constructions are directly applicable to the 1-dimensional case.7.6. Classi�cation of parabolic componentsIn the next theorem we classify all parabolic cycles and components. In particular, we show that every suchcomponent is regular, and therefore we will get one step closer to showing the equality H = Hreg .Theorem 10. If (Ml) is a parabolic cycle in H then (Ml) is a regular cycle of length 1. Moreover, W s(A1) 'C , W u(A2) ' C , �j ' �j for j = 1; 2 and H ' C � . Furthermore, there is a unique irreducible algebraic curveV of genus 0 such that W sloc(A1) [W uloc(A2) � V .Proof. By de�nition, the covering space fMl ' C . Let �l : C !Ml be the universal covering map.Let us recall that we have de�ned two projections p1 : H ! W s(A1) and p2 : H ! W u(A2). For every lthe image p1(Ml) is in a component Wl of W s(A1). Moreover, for su�ciently large l we haveWl =W , whereW is the connected component of W s(A1) containing A1. We claim that Wl is not isomorphic to P1. If, tothe contrary, Wl is isomorphic to P1 for some l then �jWl would map Wl to Wl+1. If Wl+1 were parabolic orhyperbolic then �jWl would lift to a bounded function P1 ! C and it would have to be constant, which is notpossible. Thus Wl+1 is also elliptic. Hence, W (the component of A1) is elliptic. Moreover �jW : W ! W .Hence �jW is a rational map. Moreover, �jW has exactly one attractive �xed point. But it is easy to see thata non-constant rational map having one attractive �xed point must have at least one other �xed point. Weobtain a contradiction with the assumption that for some l the component Wl is elliptic.The case of hyperbolic Wl can also be excluded. Indeed, the lift ~q : C ! D of the map q = p1 � �l wouldbe an entire function with values in D , and thus by Liouville's theorem it would be constant.Hence, Wl is parabolic for all l. We claim that Wl ' C . First we observe that p1(Ml) 6=Wl. This is truebecause Wl contains an element B of ��m(A1) for some su�ciently large m, and B cannot be in p1(Ml). Letus suppose that the universal covering map rl : C !Wl is not a homeomorphism. Then there exist in�nitelymany points in the preimage r�1(B). The map ~q : C ! C is an entire map and it misses a countable set ofpoints r�1(B). But Picard's theorem says that if an entire function misses 2 points then it must be constant.Thus, we have proven that if there exists a parabolic cycle (Ml) then p1jMl maps Ml to a component Wof W s(A1) which is isomorphic to C . Also p2jMl maps Ml to a component W 0 of W u(A2) isomorphic to C .The map �1 is an entire function. However, due to the algebraic nature of R, it has �nite multiplicity.Thus, up to obvious identi�cations �1 is polynomial. But every point of W s(A1) is attracted to A1. Thus,�1 is linear. Otherwise an open set of points of W u(A1) would be attracted to 1. A similar argument showsthat �2 is linear as well.Let us consider the function g = 1= . This is a holomorphic function on H. Moreover, it is boundedby Lemma 17. Thus, if M0 is a parabolic component (i.e. M0 is either C or C � or C =� , where � is a 2-dimensional lattice in C ) then g is constant on that component. Thus, the component M0 is regular and weobtain the existence of the algebraic curve V from Theorem 8. We need to show that V is irreducible. Fromthe construction of H and the lack of branch points in W s(A1) and W u(A2) we conclude that p1 : H !W s(A1)nfA1g and p2 : H !W u(A2)nfA2g are covering maps. Thus, every component of H is isomorphic toeither C or C � . The �rst case can be excluded by lifting and Picard's Theorem, and thus every component of



A solution to the Equichordal Point Problem 49H is isomorphic to C � . In particular, p1 and p2 are di�eomorphisms on every component of H and thus also 1 and  2 are di�eomorphisms on every component of H. We also observe that H has only one component,as every sequence (mn)1n=0 2 W s(A1) extends to a double-sided sequence (mn)1n=�1 2 H in a unique way,as �1 is a di�eomorphism. Finally, Theorem 8 implies in this case that V contains a Zariski-dense subsetSh(M), which is connected. Therefore V is irreducible.7.7. The hyperbolic caseOur next goal is to show that every hyperbolic component is regular. The following theorem is the �nal stepof the proof of the equality H = Hreg .Theorem 11. If (Ml) is a hyperbolic cycle in H then it is regular.Proof. Let us assume that (Ml) is a �nite or in�nite hyperbolic cycle in H. Let us suppose that  jM isnon-constant. We will get a contradiction with this assumption.Let p : D ! M0 be the universal covering map. Let us consider the function g = 1= . We know fromLemma 17 that g is bounded. The function ~g = g � p is bounded and analytic on the unit disk. Using thetheorem of Fatou (see section A of the Appendix) we know that for almost every � 2 [0; 2�[ the radial limitlimr!1 ~g(rei�) exists. The theorem of Riesz implies that for every c the set of those directions � 2 [0; 2�[ thatlimr!1 ~g(rei�) = c has measure 0. Thus the set of radial limits of ~g consists of uncountably many values.We will re-interpret our observations in terms of the geodesics on the surface M0 equipped with theRiemannian metric of constant negative curvature �1 derived from the Poincar�e metric on D . The theoremsof Fatou and Riesz imply that the function g has a limit along almost every geodesic ray on M0. This meansthat the function  is bounded along almost every geodesic ray and it has a limit. This fact will allow us touse the same method as we have already used in the proof of Theorem 8 in order to show that almost everygeodesic ray  on M0 de�nes a regular connected component M (1) of H by a certain limiting procedure.Let us pick a geodesic ray  : [0;1[! M0 parameterized by the length parameter s. Moreover, we willassume that c0 = lims!1 � (s)(139)exists.The next point of our strategy is to show that there are uncountably many limit points of the geodesic projected to X via Sh. The precise statement is a little bit stronger.As in the proof of Theorem 8, we pick numbers r1; r2 so that 0 < r1 < r2 < �, r2=r1 > �2 = 1=�1 and anumber N such that the map z 7! c0=(�N2 z) maps the annulus A = A(r1; r2) = fz : r1 � jzj � r2g onto itself.Let Z be the set of those values z 2 C � for which there is a sequence sn % 1 and a sequence pn % 1of natural numbers such that z = limn!1 1(�pn(sn)):(140)We claim that Z \ A is uncountable. We recall that M 0 = M=h�i, M 0 is connected and there is a coveringmap from M0 to M 0. Therefore the universal covering space of M 0 is D . Let us consider the factor map ̂1 :M 0 ! C �=h�1i, where the range is isomorphic to the complex torus. Let ̂1 be the projection of 1 =  1�to the complex torus C �=h�1i via the natural projection. It su�ces to show that the set Z 0 � C �=h�1i of thelimit points of the curve ̂1 is uncountable. We note thatZ 0 = [s�0 ̂1([s;1[ )and therefore Z 0 is a continuum as an intersection of a descending sequence of continua. Thus, if Z 0 has atleast two points then it has uncountably many points. Let us suppose that Z 0 has only one point. It is easyto see that Z also has exactly one point. Let Z = fzg. We claim that lims!1 (s) exists in M0.There exist numbers p and q such that for su�ciently large s we have: 1(�p(s)) 2 A; 2(�q(s)) 2 A:



50 Marek RychlikTherefore, there exists a pair (�; �) 2 E �E0 such that for su�ciently large sp1(�p(s)) 2 S�;�;p2(�q(s)) 2 U�;�:It is clear that the limits m+ = lims!1 p1(�p(s));m� = lims!1 p2(�q(s))exist. These can be thought of as the limits of the tails of the sequence of germs (s). It is easy to seethat m+ 2 0W s(A1) and m� 2 0W u(A2), i.e. m+ and m� are not branch points. Let m+ = (m+n )1n=p andm� = (m�n )qn=�1. It is natural to attempt to construct m = lims!1 (s) by �lling in the \missing part"(mn)p�1n=q+1 of m in a natural way. The complication is that the limit m can be a branch point of H. However,there are only a �nite number of points m of H with the property that p1(�p(m)) = m+ and p2(�q(m)) = m�.The curve  enters a neighborhood of exactly one of them, and this is the limit lims!1 (s). The reader caneasily �ll in the details by considering the construction of the branch points of H. We obtained a contradictionwith the fact that  is a geodesic ray onM0 because a geodesic ray cannot have a limit in M0. Thus, we havecompleted the proof of the fact that Z (and even Z \ A) is uncountable.For every c 2 C � we consider the setW (c) of these z 2 A such that there exists an orbit (z0; z1; : : : ; zN) 2RN such that:1. �u�(z) = z0.2. �s�(c=(�N2 z)) = zN ;We notice that there exists a regular component M of H such that  jM = c i� the set W (c) is uncountable.Our strategy is to prove that W (c) is uncountable for some values of c. Let us �x z 2 Z \ A and let snand pn be such that equation 140 holds. Let qn be a sequence of natural numbers and (�(n); �(n)) 2 E � E0be a sequence of pairs with the following properties:1. p1(�pn(sn)) 2 S�;�(n) ;2. p2(�qn(sn)) 2 U�;�(n) ;3. pn � qn = N is constant for su�ciently large n.Let E be the set of all pairs (�(n); �(n)) for all n. We may assume without loss of generality that for some�1; �2 2 M, �s�(n) ! �s�� � �1 and �u�(n) ! �u�� � �2 in the topology of uniform convergence. (This time, weinclude the trivial case when �1 = �2 = 1.) Clearly, limn!1  ((sn)) = c0. Also, for every su�ciently largen, there is a sequence (z(n)0 ; z(n)1 ; : : : ; z(n)N ) 2 RN with the property that z(n)0 2 �u�(n)(A), z(n)N 2 �s�(n)(A). Bychoosing a convergent subsequence we obtain a sequence (z0; z1; : : : ; zN ) 2 RN such that z0 = �u�� (�1z) andzN = �s��(�2(c0=(�N2 z))). Thus, z 2 W (c1) where c1 = c0�1�2. Hence,Z \A � [�1;�22MW (c0�1�2):(141)We know that M is countable. Thus the union on the right has countably many terms. (It is even �nite, butcountability is su�cient for our argument). Therefore, there exists c1 for which W (c1) is uncountable. Thus,there is a regular componentM (1) of H such that  jM (1) � c1. In view of the fact that H has only countablymany components, the set of all possible values c1 is countable. Hence, the set of all possible limits c0 givenby equation 139, where  varies over the set of all geodesic rays, is also countable. This is a contradictionwith the assumption that  jM0 is not constant.We arrived at a contradiction assuming that M0 is not regular. Therefore the proof of the theorem iscomplete.



A solution to the Equichordal Point Problem 517.8. A summary of resultsTheorems 8, 9, 10 and 11 yield the following:Corollary 4. If R is the equichordal relation then H = Hreg. If there exists a heteroclinic connection, i.e.H 6= ;, then there exists an invariant algebraic curve V � X = P21 such that1. W sloc(A1) [W uloc(A2) � V ;2. for every cycle (Ml) and M = SlMl there exists a unique invariant algebraic curve V 0 containing V andthere exists a natural number N such thatV 0 � N[k=0Rk(V ) \R�(N�k)(V );moreover, Sh(M) � V 0 and V 0nSh(M) is �nite.Conceptually, V is a variety constructed in the proof of Theorem 8 corresponding to a minimal cycle. However,we may de�ne V to be the Zariski closure of W sloc(A1) [W uloc(A2). We still need Theorem 8 to show thatdimV = 1.We achieved our goal of reducing the Equichordal Point Problem to the question of whether there existsan algebraic equichordal curve.8. Absence of algebraic solutionsThe only remaining step in our solution of the Equichordal Point Problem is a proof of non-existence of analgebraic equichordal curve C, i.e. given by a single polynomial equation of the formH(x; y) = 0 in rectangularcoordinates, where H(x; y) = Ppj=0Pql=0 hjlxjyl. As we will see, there is a relatively easy solution to thisproblem. Indeed, we have shown in the previous section that if there exists a heteroclinic connection forthe equichordal relation then there is an algebraic curve V such that W sloc(A1) [W uloc(A2) � V . But thisimplies easily that C � V . Indeed, we know that C is real-analytic, which allows local continuation of C intothe complex domain. By Theorem 2 C contains two arcs contained in W sloc(A1) and W uloc(A2) respectively.Analytic continuation along C shows that C is entirely contained in V .We note that in the case when the genus of V is � 1 we have not excluded the possibility that V is notirreducible. However, we have the following result:Lemma 18. (Irreducibility lemma) If V is the minimal algebraic variety containing an equichordal curve C(i.e. the Zariski closure of C) then V is an irreducible algebraic curve.Proof. Let m = (mn)1n=�1 2 H be the heteroclinic connection de�ned by the formula [ ~C ]Pn , where ~C is alocal continuation of C into the complex domain and (Pn) is an equichordal sequence contained in C. Weclaim that the connected component M of H containing m has the property �(M) = M . Indeed, using theequichordal curve we may deform m continuously into �(m) within H. Thus, all points of the form �l(m),l 2 Z, lie in the same component of H. In particular, the cycle containing m has length 1, i.e. �(M) = M .Finally, Theorem 8 implies that that V is equal to Sh(M) up to a �nite set of points. Furthermore, Sh(M)is Zariski-dense in V since V is pure-dimensional. In view of the fact that M is connected, Sh(M) is alsoconnected. Thus V is irreducible.The argument for the absence of algebraic solutions is most readily done in semi-projective coordinates. Theequichordal map represented in this coordinate system is (x;w) 7! (x0; w0) wherex0 = �x+ 1p1 + w2 ;w0 = x0 + bx0 � bw(142)with the understanding that we calculate x0 �rst and use it in the second equation.



52 Marek RychlikTheorem 12. The equichordal relation has no irreducible invariant algebraic curve containing W sloc(A1) [W uloc(A2).Proof. Let us suppose that V is an invariant algebraic curve of the equichordal relation.Let R0 be an irreducible component of R \ (V � V ) which is a non-singular algebraic relation on V . Let�l : V 2 ! V , l = 1; 2, be the projection onto the l-th coordinate. Let S0 = S \ (V � V ) be the singular set ofR0. Let S00 = �1(S0) [ �2(S0).Let � be the multiplicity of the map �ljR0 at all points P 2 R0nS0. We can see that � is independent ofl due to the reversibility of R, i.e. R�1 = G � R � G, where G2 = id and G is a bi-rational map such thatG(C) = C, which implies that G(V ) = V . There are only two possibilities: � is equal to either 1 or 2. Thisis because R itself has multiplicity 2 at all non-singular points. These two cases will be studied separately.Let us start with � = 2. In this case it is true that if P 2 V nS00 then both R(P ) and R�1(P ) are containedin V , i.e. for a generic P 2 V both preimages of P are also in V . In particular, the full forward and backwardorbits of A1 and A2 are contained in V . It is clear that these are in�nite sets contained in the line w = 0 insemi-projective coordinates (or y = 0 in rectangular coordinates). This means that the line w = 0 is containedin V . As the line w = 0 by itself is an irreducible projective curve, V coincides with the line w = 0. This is acontradiction, as V contains W sloc(A1) and W uloc(A2) which are not contained in the line w = 0.Let us consider the case of � = 1. In this case the relation R0 is a graph of a bi-holomorphic, and thusbi-rational map, as any bi-holomorphic map on an algebraic curve is bi-rational. We claim that in this caseV must have genus 0. Indeed, let V 0 be the compact Riemann surface associated with the algebraic curve V .The relation R0 lifts to an algebraic relation R00 which is a graph of a biholomorphic map (automorphism)� : V 0 ! V 0. Moreover, � has at least two �xed points corresponding to A1 and A2. They are hyperbolic �xedpoints with eigenvalues �1 and �2 respectively. The only Riemann surface admitting such an automorphismis P1 and after a change of coordinates, this automorphism is equivalent to multiplication by a number, inour case, by � = �1. This last observation is valid even for non-compact Riemann surfaces 2. Hence we mayassume that V 0 = P1 and R0 is the graph of multiplication by �.Let (X(z);W (z)) be a parameterization of V by rational functions establishing bi-rational equivalence ofV 0 and V . In view of the fact that V is invariant, these functions satisfy the following system of functionalequations: X(�z) = �X(z) + 1p1 +W (z)2 ;W (�z) = X(�z) + bX(�z)� bW (z):(143)In particular, there is a branch of p1 +W (z)2 which is a rational function. It is clear that in this case bothbranches are rational functions, say S(z) and �S(z). The expression 1=p1 +W (z)2 in the �rst of the aboveequations is either 1=S(z) or �1=S(z).We claim that W (0) = W (1) = 0 and X(0) = X(1) = �1=2 with X(0) 6= X(1). In other words, thehyperbolic �xed point on V 0 map to A1 and A2. Indeed, the points (X(0);W (0)) and (X(1);W (1)) are�xed points of the equichordal relation. We proceed with a detailed argument.Let limz!0(X(z);W (z)) = (x0; w0) (the case of z !1 is analogous). If x0 and w0 are �nite, w0 6= �i andx0 6= b then no singularities of equations 143 are encountered. Thus, either w0 = 0 in which case x0 = �1=2by the �rst equation, or w0 6= 0 and (x0 + b)=(x0 � b) = 1 by the second equation. The second possibilityleads to a contradiction since x0 is �nite.If x0 =1 then the �rst equation implies that w0 = �i. The second equation implies that there is a �xedpoint of R0 in V 0 with eigenvalue of modulus 1. Indeed, there is an integer d such that W (z)1=d is a localuniformizing parameter on V 0 at z = 0 and the second equation implies that with respect to this parameterR0 is a graph of multiplication by a root of unity of order d up to terms of order higher than 1. This isa contradiction, as the eigenvalue could only be either � = �1 or �2 = 1=�. This argument works, even ifw0 =1.If w0 = 1 and x0 is �nite then x0 = 0 by the �rst equation. But the second equation implies that thereexists a non-hyperbolic �xed point of R0 in V 0, just in the previous case.2 Essentially, this argument is the content of [16]



A solution to the Equichordal Point Problem 53If x0 = b the �rst equation implies that w0 is �nite (equal to �p(1=a)2 � 1). But going back to the secondequation we obtain a contradiction.Our claim has been proven, i.e. the points 0 and 1 on P1 map to A1 and A2 under the map z 7!(X(z);W (z)).Due to the fact that W sloc(A1) and W uloc(A2) are non-singular at A1 and A2 respectively, W (z) has asimple zero at 0 and 1.We claim that W (z) can have no zero other than z = 0 and z = 1. Let us suppose that z0 2 C � is suchthatW (z0) = 0. AsW (�nz0) 6= 0 for su�ciently large negative integer n, we may assume thatW (��1z0) 6= 0,replacing z0 with �nz0 if necessary. Let zn = �nz0. We note that the second of the equations 143 writtenfor z = z�1 implies that X(z0) = �b. The �rst equation implies that as long as W (zn) = 0, we haveX(zn+1) = X(zn) � 1. Thus, if W (zn) = 0 for n = 0; 1; : : : ; N then X(zn) = �b +Mn, where Mn is aninteger. We recall that b 2 ]0; 1=2[. Hence, for n = 0; 1; : : : ; N we have X(zn) 6= b. A look at the secondequation tells us that the order of zn as a zero of W (z) is a non-decreasing function of n. In turn, it meansthat W (zn) = 0 for all n � 0. This is a contradiction, as then W (z) would have to vanish identically and weknow that this is not the case.Thus, we have proven that W (z) has a zero only at z = 0 and z =1 and that these zeros are simple. Letf(z) = 1=W (z). This is a rational function with simple poles at 0 and 1 and no other poles. Moreover, thisfunction satis�es the functional equation 52, which we repeat here for the reader:1f(�z)� f(z) + 1f(z)� f(z=�) = �p1 + f(z)2 :The only possibility is that f(z) = �z � �=z +  for some �nite constants �, � and , the �rst two of whichare non-zero. But this function does not satisfy the functional equation since p1 + f(z)2 is not rational (ithas branch points) with one exception, when 4�� = 1 and  = 0 (in this situation each of the equationsf(z) = �i has a double root). This case is easily reduced to � = � = 1=2 by scaling the variable z linearly.If f(z) = 12 (z� 1=z) then p1 + f(z)2 = � 12 (z+1=z). It is easy to check though, that this f does not satisfythe functional equation. Indeed, the left-hand side of 52 is112 (�� 1) z + 12 �1� 1�� 1z + 112 �1� 1�� z + 12 (�� 1) 1z :(144)This rational function has poles at points z = �ip� and z = �ip1=�. The right-hand side of 52 is�q1 + � 12 �z � 1z ��2 = � �12 �z + 1z � :(145)This last rational function has its poles at z = �i. Thus, in view of the fact that � 6= 1, f(z) does notsatisfy 52.9. Numerical resultsAlthough there are no equichordal curves, the invariant manifolds of the equichordal map exist, and they canbe numerically computed, using an algorithm frequently applied to dynamical systems on the plane.In this section we present Figure 12 resulting from such computations. Although the estimates of theinvariant curves drawn in this section have not been rigorously veri�ed for the presence of excessive errors,reasonable care was taken in order to ensure the validity of these �gures, up to the resolution of a typesetter.Let us note that for the excentricity value a = 0:6 the e�ect of \splitting" of the curves � (A1) and � (A2)is still quite small. For smaller excentricities the wiggling of � (A2) in the vicinity of A1 can be observedonly after substantial magni�cation of plots similar to the one presented here. The author studied the caseof a = :1 where the magni�cation needed was roughly 105 in order to observe the wiggling pattern. A videotape of this study has been made.
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-600.00 -400.00 -200.00 -0.00 200.00 400.00 600.00Fig. 12. The curve � (A2) for excentricity a = 0:6Our main result is negative and not very quantitative in character. One may study the properties of � (Ai),i = 1; 2, in order to better understand the phenomenon of splitting invariant curves for dynamical systems.Our approach to the Equichordal Point Problem has been designed to solve the existence question. Arguably,it is the correct approach. However, the asymptotic study of the Equichordal Point Problem along the linespresented in [17, 14] is of interest also in other contexts. For example, splitting of separatrices was studiedfor the map (x; y) 7! (2x � y + k sinx; x) known as the \standard map" in [7] and a number of more recentworks by the same authors.10. Calculation of the expansion of fWe know that there exists a solution to the functional equation 52 de�ned and analytic in a puncturedneighborhood of 0 and such that 0 is a simple pole. We can easily calculate any �nite number of terms of theexpansion of f into a Laurent series. This can be accomplished by the MACSYMA program in Table 1. Therecord of a sample session generating the TEX form of the coe�cients is in Table 2, assuming that the input�le containing the text of Table 1 is named \series.mc".The output (not shown) following the last input line is a TEX formatted list of coe�cients. The coe�cientsgenerated in the standard notation are:f1 = � �2 (�2 + 1) ;f3 = (�� 1)4 �38 (�2 + 1)3 (�4 + 1) ;f5 = � (�� 1)4 �5 ��6 � �5 + 3�4 � �3 + 3�2 � �+ 1�16 (�2 + 1)4 (�2 � �+ 1) (�2 + �+ 1) (�4 + 1) (�4 � �2 + 1) :The beginning of the expansion of f is
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-550.00 -500.00 -450.00 -400.00Fig. 13. The curve � (A2) for excentricity a = 0:6 magni�ed near A1f(z) = 1z + f1z + f3z3 + f5z5 + : : : :(146)Coe�cients up to order 10 can be calculated easily, but we do not include the formulas due to their rapidlyincreasing complexity. Our computations were carried out on a SUN 4 workstation running Symbolics MAC-SYMA version 417.100. If we �x � to a rational with a small numerator and denominator, and improve theprogram slightly, we may obtain expansions to order 50 quite handily.It is interesting that the coe�cients of this expansion seem to converge as �! 1, which is equivalent to� ! 1 and a ! 0. The calculation suggests that f(z) = 1z � z4 in the limit, which produces a perfect circlewhen expressed in rectangular coordinates. On the other hand, the character of this convergence is somewhatunclear. The preservation of cones property produces C0-convergence. There seems to be no reason for theconvergence to be uniform in the complex domain. Neither should one expect analyticity of f with respectto � at � = 1, i.e. analyticity in the excentricity around a = 0.A modi�cation of the results of the previous section can be used to show that a Riemann surface of f canbe constructed over C with a countable number of branch points. It is not clear whether branching indeedTable 1. A sample MACSYMA program to generate the expansion of f/* Solution to the functional equation near z=0. */f[-1]:1;lambda:(mu+1)/(mu-1);deftaylor(f(z),sum(f[2*n+1]*z^(2*n+1),n,-1,inf));eqn:1/(f(z/mu)-f(z))+1/(f(z)-f(mu*z))=lambda/sqrt(1+f(z)^2);coeff_eqn(n):=block([teqn:taylor(eqn,z,0,2*n+1)],makelist(coeff(teqn,z,2*k+1),k,1,n));solve_eqn(n):=solve(coeff_eqn(n),makelist(f[2*k+1],k,0,n-1));solve_factored(n):=factor(solve_eqn(n));tex_list_coeffs(n):= block([sol:solve_factored(n)],sol:sol[1], for i:1 thru length(sol) do tex(sol[i]));



56 Marek Rychlikoccurs, or whether f has any poles di�erent from 0. A numerical study in the complex domain could shedsome light upon these questions.Table 2. A MACSYMA session generating TEX-formated coe�cients of f(C1) load("series.mc");Batching the file /dept/rychlik/macsyma/equichordal/series.mcBatchload done.(D1) /dept/rychlik/macsyma/equichordal/series.mc(C2) tex_list_coeffs(3);/usr/export/macsyma/share/tex.o being loaded.A. Theorems of Fatou and RieszFor the convenience of the reader we give a statement of the Fatou's theorem, following [2].Theorem 13. Every single-valued analytic function f(z) bounded in the disc jzj < 1 is continuous, underapproach within an angular sector, at a set of boundary points on jzj = 1 whose linear measure always equals2�.We note that the radii rei�, 0 � r < 1 are geodesic rays with respect to the Poincar�e metric on D . The abovetheorem implies that limr!1 f(rei�) exists for full measure set of � 2 [0; 2�[. As we may change coordinatesusing the group of automorphisms of D , the same is true about the approach to the boundary along anygeodesic ray to the boundary. For more information on the related subject of geodesic ows on surfaces ofconstant negative curvature the reader may consult [10].The Theorem of F. and M. Riesz can also be found in [2].Theorem 14. Let the function f(z) be analytic and bounded in the disc jzj < 1, say jf(z)j < M , and let Ebe a Lebesgue measurable set of those � 2 [0; 2�[ for whichlimr!1 f(rei�)exists and equals zero. If the Lebesgue measure m(E) > 0 then f(z) must vanish identically.This theorem complements Fatou's theorem. Together, these two theorems imply that either f is identicallyequal to zero or it has a non-zero radial limit at almost all boundary points.B. The classi�cation of projective curvesTheorem 15. Let V be a complex projective curve of genus 0. Then V is birationally equivalent to P1(C ).In other words, if V � Pn(C ) is an explicit realization of V as a subvariety of a projective space then there isa map i : P1(C ) ! Pn(C ) such that i(z) = [i0(z) : i2(z) : : : : : in(z)], i(P1) = V and the functions ij([z0 : z1])are homogenous polynomials in z0 and z1. One of the standard references for this result is [15].C. Remarks on general algebraic relationsThe special feature of the equichordal relation that has been used is that the local branches are explicitlyknown and have the form of relatively simple algebraic expressions. Thus, iterating parameterized curvesbecomes a matter of composition with local branches. In general, when varieties are described by polynomialequations only, we would have to use an alternative description of curves through the associated ideals offunctions. The machinery of commutative algebra becomes essential.
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