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De l’Hôpital’s Rule

Theorem 1. Let f(x) and g(x) be differentiable functions on an open
interval which contains a point a. The functions do not have to be differen-
tiable at a. If a = ∞ then the interval is of the form (R, ∞) where R is a
finite number. If a = − ∞ then the interval is of the form ( −∞, R). More-
over, let us assume that either

lim
x→a

f(x)= lim
x→a

g(x) = 0 (1)

or

lim
x→a

|f(x)|= lim
x→a

|g(x)|=∞. (2)

Moreover, let g ′(x) � 0 on some open interval containing a, but not neces-
sarily at a (at which the derivative may not even exist).

In addition, let us assume that the following limit exists:

lim
x→a

f ′(x)

g ′(x)
= A
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exists. The value A =±∞ is acceptable. Then

lim
x→a

f(x)

g(x)
= A.

Proof. The Cauchy Mean Value theorem states that for any b in the afor-
mentioned interval where both f(x) and g(x) are differentiable and g ′(x) � 0
we have:

f(x)− f(b)

g(x)− g(b)
=

f ′(c)

g ′(c)
(3)

where c is a certain point between a and x. If b is sufficiently close to a, the
right-hand side is close to A, and so is the left-hand side. More precisely
both sides admit an upper and lower bounds forming an interval [A − ǫ, A +
ǫ] if b and x are sufficiently close to a. If (1) holds, then we let b → 0 in (3)
and in view of limb→0 f(b) = limb→0 g(b)= 0 we obtain:

lim
b→0

f(x)− f(b)

g(x)− g(b)
=

f(x)

g(x)
≤A+ ǫ and≥A− ǫ, and thus= A. (4)

(In passing, we proved that the limit limx→a
f(x)

g(x)
actually exists!)

Thus

lim
x→a

f(x)

g(x)
= A.
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In the case when (2) holds, we proceed similarly, but we let x→ a in (3):

lim
x→a

f(x)− f(b)

g(x)− g(b)
= lim

x→a

f(x)

g(x)

1−
f(b)

f(x)

1−
g(b)

g(x)

= lim
x→a

f(x)

g(x)
= A.

�
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Rolle’s Theorem

Theorem 2. If f(x) is differentiable on (a, b) and continuous in [a, b] and
f(a) = f(b) then there exists a c in [a, b] such that f ′(c) = 0.

Proof. If f is constant then any c will work. If f(x) > f(a) for some x then
we pick c to be the global maximum. If f(x) < f(a) for some x then we pick
x to be a global minimum. In both cases c is in (a, b). Thus, it is a local
maximum or minimum, and thus f ′(c)= 0. �

Mean Value Theorem

Theorem 3. If f(x) is differentiable on (a, b) and continuous on [a, b] then
there exists a value of c in (a, b) such that

f(b)− f(a)

b− a
= f ′(c) (5)

Proof. We apply Rolle’s Theorem to

g(x) = (f(x)− f(a))(b− a)− (f(b)− f(a))(x− a)
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This function is cleverly chosen so that g(a) = g(b) = 0. Also,

g ′(x) = f ′(x) (b− a)− (f(b)− f(a))

and if g ′(c) = 0 then f ′(c)(b − a) = f(b) − f(a) which immediately leads to
(5).

�

Remark 4. Thus, if your average speed going from Tucson to Phoenix is
80mph then there is a moment in time when your instantenous speed is also
80mph.
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Mean Value Theorem implies Cauchy Version

Theorem 5. If f(x) and g(x) are differentiable on (a, b) and continuous on
[a, b] then there is a c such that

(f(b)− f(a))g ′(c)= f ′(c)(g(b)− g(a)). (6)

Thus, if g(a)� g(b) then also g ′(c)� 0 and

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g ′(c)
, (7)

Proof. We apply Rolle’s Theorem to

g(x)= (f(x)− f(a)) (g(b)− g(a))− (f(b)− f(a))(g(x)− g(a)). (8)

We note that g(a)= g(b) = 0 and

g ′(x) = f ′(x)(g(b)− g(a))− (f(b)− f(a))g ′(x). (9)

Thus, when g ′(c)= 0 we obtain (6). �
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