Math 125 Notes on Mean Value Theorems and De l'Hôpital's Rule

by Marek Rychlik

November 16, 2008

De l'Hôpital's Rule

Theorem 1. Let $f(x)$ and $g(x)$ be differentiable functions on an open interval which contains a point a. The functions do not have to be differentiable at a. If $a=\infty$ then the interval is of the form (R, ∞) where R is a finite number. If $a=-\infty$ then the interval is of the form $(-\infty, R)$. Moreover, let us assume that either

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{x \rightarrow a}|f(x)|=\lim _{x \rightarrow a}|g(x)|=\infty \tag{2}
\end{equation*}
$$

Moreover, let $g^{\prime}(x) \neq 0$ on some open interval containing a, but not necessarily at a (at which the derivative may not even exist).
In addition, let us assume that the following limit exists:

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A
$$

exists. The value $A= \pm \infty$ is acceptable. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=A
$$

Proof. The Cauchy Mean Value theorem states that for any b in the aformentioned interval where both $f(x)$ and $g(x)$ are differentiable and $g^{\prime}(x) \neq 0$ we have:

$$
\begin{equation*}
\frac{f(x)-f(b)}{g(x)-g(b)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \tag{3}
\end{equation*}
$$

where c is a certain point between a and x. If b is sufficiently close to a, the right-hand side is close to A, and so is the left-hand side. More precisely both sides admit an upper and lower bounds forming an interval $[A-\epsilon, A+$ $\epsilon]$ if b and x are sufficiently close to a. If (1) holds, then we let $b \rightarrow 0$ in (3) and in view of $\lim _{b \rightarrow 0} f(b)=\lim _{b \rightarrow 0} g(b)=0$ we obtain:

$$
\begin{equation*}
\lim _{b \rightarrow 0} \frac{f(x)-f(b)}{g(x)-g(b)}=\frac{f(x)}{g(x)} \leq A+\epsilon \text { and } \geq A-\epsilon, \text { and thus }=A \tag{4}
\end{equation*}
$$

(In passing, we proved that the limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ actually exists!) Thus

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=A
$$

In the case when (2) holds, we proceed similarly, but we let $x \rightarrow a$ in (3):

$$
\lim _{x \rightarrow a} \frac{f(x)-f(b)}{g(x)-g(b)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \frac{1-\frac{f(b)}{f(x)}}{1-\frac{g(b)}{g(x)}}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=A .
$$

Rolle's Theorem

Theorem 2. If $f(x)$ is differentiable on (a, b) and continuous in $[a, b]$ and $f(a)=f(b)$ then there exists a c in $[a, b]$ such that $f^{\prime}(c)=0$.

Proof. If f is constant then any c will work. If $f(x)>f(a)$ for some x then we pick c to be the global maximum. If $f(x)<f(a)$ for some x then we pick x to be a global minimum. In both cases c is in (a, b). Thus, it is a local maximum or minimum, and thus $f^{\prime}(c)=0$.

Mean Value Theorem

Theorem 3. If $f(x)$ is differentiable on (a, b) and continuous on $[a, b]$ then there exists a value of c in (a, b) such that

$$
\begin{equation*}
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \tag{5}
\end{equation*}
$$

Proof. We apply Rolle's Theorem to

$$
g(x)=(f(x)-f(a))(b-a)-(f(b)-f(a))(x-a)
$$

This function is cleverly chosen so that $g(a)=g(b)=0$. Also,

$$
g^{\prime}(x)=f^{\prime}(x)(b-a)-(f(b)-f(a))
$$

and if $g^{\prime}(c)=0$ then $f^{\prime}(c)(b-a)=f(b)-f(a)$ which immediately leads to (5).

Remark 4. Thus, if your average speed going from Tucson to Phoenix is 80 mph then there is a moment in time when your instantenous speed is also 80 mph .

Mean Value Theorem implies Cauchy Version

Theorem 5. If $f(x)$ and $g(x)$ are differentiable on (a, b) and continuous on $[a, b]$ then there is a c such that

$$
\begin{equation*}
(f(b)-f(a)) g^{\prime}(c)=f^{\prime}(c)(g(b)-g(a)) \tag{6}
\end{equation*}
$$

Thus, if $g(a) \neq g(b)$ then also $g^{\prime}(c) \neq 0$ and

$$
\begin{equation*}
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \tag{7}
\end{equation*}
$$

Proof. We apply Rolle's Theorem to

$$
\begin{equation*}
g(x)=(f(x)-f(a))(g(b)-g(a))-(f(b)-f(a))(g(x)-g(a)) \tag{8}
\end{equation*}
$$

We note that $g(a)=g(b)=0$ and

$$
\begin{equation*}
g^{\prime}(x)=f^{\prime}(x)(g(b)-g(a))-(f(b)-f(a)) g^{\prime}(x) \tag{9}
\end{equation*}
$$

Thus, when $g^{\prime}(c)=0$ we obtain (6).

