Math 125 Notes on Multiple Proportionality

by Marek Rychlik

November 16, 2008

Multiple proportionality

Example 1. Illumination I is proportional to $\cos \theta$ and $\frac{1}{r^{2}}$. Show that the formula for I is:

$$
\begin{equation*}
I=C \frac{\cos \theta}{r^{2}} \tag{1}
\end{equation*}
$$

where C is a certain constant.
It is more generally true that if a quantity Q turns out to be proportional to two different functions $f(x)$ and $g(y)$ then $Q=k f(x) g(y)$ where k does not depend on x and y.

Remark 2. Note that such multiple proportionality is determined by two different experiments. For instance, one varies the angle θ first, while keeping r fixed, for several values of r. Subsequently, one varies r while keeping θ fixed, and one conducts the experiment with several values of θ.

Proof. We can write $Q=C_{1}(y) f(x)$ and $Q=C_{2}(x) g(y)$. Thus

$$
\begin{gathered}
C_{1}(y) f(x)=C_{2}(x) g(y) \\
\frac{f(x)}{C_{2}(x)}=\frac{g(y)}{C_{1}(y)}
\end{gathered}
$$

We observe that the left-hand side is a function of x only, and the righthand side is a function of y only. The only possibility is that both functions are constant. Let us call the constant C. Thus:

$$
C=\frac{f(x)}{C_{2}(x)}=\frac{g(y)}{C_{1}(y)}
$$

Hence, $C_{1}(y)=g(y) / C$ and $C_{2}(x)=f(x) / C$. In particular,

$$
Q=C_{1}(y) f(x)=\frac{g(y)}{C} f(x)=\frac{1}{C} f(x) g(y)
$$

Hence, $Q=k f(x) g(y)$ where $k=1 / C$.

