Math 125, Section 02

Midterm II

October 24, 2008

Problem 1. The following is the graph of a certain functions $f(x), g(x), h(x)$ and $k(x)$ for $0 \leq x \leq$ 10. Please answer the questions below, listing all functions that fit the description, or say "NONE" if no function fits the given description:
a) Which function is positive for all x between 5 and 10 ?
b) The derivative of which function is decreasing?
c) Which function is not differentiable?
d) Which is the derivative of $f(x)$?

Solution 1. (a) $k(x)$ (b) $h(x)$ (c) $k(x)$ (Note: If a function is not differentiable at one point then it is not differentiable) (d) $g(x)$ (Note: One should look at the local minima and maxima of $y=f(x)$; this is where $g(x)=0$.)

Problem 2. Given is the function:

$$
f(x)=\ln \left(1-e^{x}\right)
$$

a) For which x is this function defined (i.e. what is the domain of this function) and what is its range (i.e. the set of all possible values of $f(x))$?
b) Find the derivative $f^{\prime}(x)$.
c) Find the inverse function $f^{-1}(x)$ and calculate its derivative directly, not using the formula for the derivative of the inverse function.
d) Calculate the derivative of the inverse function using the formula:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

e) Is the following statement true or false for our function? For all $x<0$:

$$
f(x)=f^{-1}(x)
$$

Solution 2. (a) Since $\ln (x)$ is defined for $x>0$, we must have $e^{x}<1$, which happens for x in $(-\infty, 0)$. The \ln function will receive an argument in $(0,1)$ and thus will take a value in $(-\infty, 0)$. Hence, both the domain and range are $(-\infty, 0)$.
(b) $f^{\prime}(x)=\frac{1}{1-e^{x}}\left(-e^{x}\right)=-\frac{e^{x}}{1-e^{x}}$
(c) We solve the equation $y=\ln \left(1-e^{x}\right)$ for x :

$$
\begin{array}{r}
e^{y}=1-e^{x} \\
e^{x}+e^{y}=1 \\
e^{x}=1-e^{y} \\
x=\ln \left(1-e^{y}\right)
\end{array}
$$

Thus, $f^{-1}(y)=\ln \left(1-e^{y}\right)$ or $f^{-1}(x)=\ln \left(1-e^{x}\right)$ just renaming $y \rightarrow x$. Since $f=f^{-1}$, the derivative is exactly the same as in (a).
(d) This is the calculation:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{-\frac{e^{\ln \left(1-e^{x}\right)}}{1-e^{\ln \left(1-e^{x}\right)}}}=\frac{1}{-\frac{1-e^{x}}{1-\left(1-e^{x}\right)}}=-\frac{1}{\frac{1-e^{x}}{e^{x}}}=-\frac{e^{x}}{1-e^{x}}
$$

(e) TRUE

Problem 3. Which of the following differentiation formulas hold for all functions $f(x)$ and $g(x)$, and a constant c ? Justify your answers. If a formula is not true, fix the right-hand side so that the formula becomes true:
a) $\frac{d}{d x}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x)$
b) $\frac{d}{d x}(f(c x))=c f^{\prime}(x)$
c) $\frac{d}{d x}\left(\frac{f(x)}{g(x)^{2}}\right)=\frac{f^{\prime}(x) g(x)-2 f(x) g^{\prime}(x)}{g(x)^{3}}$
d) $\frac{d}{d x}\left(f(g(x))=f^{\prime}(x) g^{\prime}(x)\right.$
e) $\frac{d}{d x}\left(\frac{1}{f(x)}\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$

Solution 3. (a) TRUE
(b) FALSE; we need to use the Chain Rule to fix it. We introduce the inner function $g(x)=c x$. Thus, $g^{\prime}(x)=c$ and $f(c x)=f(g(x))$. Hence:

$$
\frac{d}{d x} f(c x)=f^{\prime}(g(x)) g^{\prime}(x)=f^{\prime}(c x) c=c f^{\prime}(c x)
$$

(c) TRUE; to see this, we apply the Quotient Rule, Chain Rule (to find the derivative of $\left.g(x)^{2}\right)$ and simplify the result:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f(x)}{g(x)^{2}}\right)= & \frac{f^{\prime}(x) g(x)^{2}-f(x) \frac{d}{d x}\left(g(x)^{2}\right)}{\left(g(x)^{2}\right)^{2}} \\
= & \frac{f^{\prime}(x) g(x)^{2}-f(x) 2 g(x) g^{\prime}(x)}{g(x)^{4}} \\
& \left.=\frac{f^{\prime}(x) g(x)-2 f(x) g^{\prime}(x)}{g(x)^{3}} \quad \text { (After canceling one } g(x) .\right)
\end{aligned}
$$

(d) FALSE; The corrected version is the Chain Rule:

$$
\frac{d}{d x}\left(f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

(e) FALSE; The corrected formula is obtained by applying the Quotient Rule:

$$
\frac{d}{d x} \frac{1}{f(x)}=-\frac{f^{\prime}(x)}{f(x)^{2}}
$$

Problem 4. Find the derivatives of the following functions:
a) $f(x)=\sin (2 x)$
b) $f(x)=x^{2}+2 \sqrt{x}$ where $x>0$.
c) $f(x)=10^{x}$
d) $f(x)=x^{x}$, where $x>0$.
e) $T(l)=2 \pi \sqrt{\frac{l}{g}}$

Solution 4. (a) $f^{\prime}(x)=\cos (2 x) 2=2 \cos (2 x)$
(b) $f^{\prime}(x)=2 x+2 \frac{1}{2 \sqrt{x}}=2 x+\frac{1}{\sqrt{x}}$
(c) $f^{\prime}(x)=\ln 1010^{x}$
(d) $f^{\prime}(x)=\frac{d}{d x}\left(e^{x \ln (x)}\right)=e^{x \ln x} \frac{d}{d x}(x \ln x)=x^{x}\left(1 \ln x+x \frac{1}{x}\right)=x^{x}(\ln x+1)$
(e) $T^{\prime}(l)=2 \pi \sqrt{\frac{1}{g}} \frac{d}{d l}(\sqrt{l})=2 \pi \sqrt{\frac{1}{g}} \frac{1}{2 \sqrt{l}}=\pi \frac{1}{\sqrt{g l}}$

Problem 5. One hundred dollars is deposited in a bank that compounds interest daily. The interest rate is 8% APR $(r=.08)$. Thus, after one year the balance will be:

$$
Q(r)=100\left(1+\frac{r}{365}\right)^{365}
$$

a) Using a calculator, find the approximate balance to 6 decimal places.
b) What is the exact rate of change of the balance, when the interest rate starts changing from the initial 8% upwards?
c) How much would the interest rate have to change to increase the account balance after one year by one penny?

Solution 5. (a) $Q(0.08)=108.327757179 \ldots$
(b) "The exact rate of change" means derivative. The answer is $Q^{\prime}(r)$. The differentiation techniques required are the Power Rule and the Chain Rule:

$$
Q^{\prime}(r)=100 \times 365 \times\left(1+\frac{r}{365}\right)^{365-1} \frac{1}{365}=100\left(1+\frac{r}{365}\right)^{364}=108.304019312 c \ldots
$$

(c) To achieve a one-penny change after one year, we need to change the interest rate by a certain amount Δr such that $Q(r+\Delta r)-Q(r)=.01$ dollars. But $Q(r+\Delta r)-Q(r) \approx$ $Q^{\prime}(r) \Delta r$. Thus, we can solve the equation $Q^{\prime}(r) \Delta r=.01$ to get a nearly exact value for Δr. Hence:

$$
\Delta r \approx \frac{.01}{Q^{\prime}(r)} \approx \frac{.01}{108.304019312} \approx 0.000092333
$$

Hence, the interest change has to be about 0.00923%.

