Name:

Note: 5 problems out of $6=$ full credit. Each problem is worth 20 points. If 6 problems are solved, the worst scoring problem is dropped.

Midterm III

Problem 1. Let $f(x)=x^{3}-6 a^{2} x+a^{3}$ with constant $a>1$. Find (answers will be in terms of a)
a) the coordinates of the local maxima and the local minima.
b) the coordinates of the inflection point(s).

Solution: $f^{\prime}(x)=3 x^{2}-6 a^{2}$. Thus, critical points satisfy $3 x^{2}-6 a^{2}=0$, and this happens when $x= \pm \sqrt{2} a$. The critical values at these points are $f(\sqrt{2} a)=(-4 \sqrt{2}+1) a^{3}$ and $f(-\sqrt{2} a)=(4 \sqrt{2}+1) a^{3}$. We have $f^{\prime \prime}(x)=6 x$ so $f^{\prime \prime}(x)=0$ when $x=0$. This is an inflection point because it is a local (and global) minimum of the first derivative. To determine which critical point is a local minimum or maximum, we use the second derivative test: $f^{\prime \prime}(\sqrt{2} a)=6 \sqrt{2} a>0$ and $f^{\prime \prime}(-\sqrt{2} a)=-6 \sqrt{2} a<0$. Thus, $x=\sqrt{2} a$ is a local minimum and $x=-\sqrt{2} a$ is a local maximum. (We could also argue that the first derivative changes sign from + to - to + when $\operatorname{crossing} x= \pm \sqrt{2} a$)

Problem 2. Wire with a total length of L inches will be used to construct the edges of a rectangular box and thus provide a framework for the box. The bottom of the box must be square. Find the maximum surface area that such a box can have.

Solution: Let x be the length of the side of the square bottom, and let y be the height. Thus $L=8 x+4 y$. This implies that $y=(L-8 x) / 4$ and since both x and y must be positive, the variable x must be within the interval $[0, L / 8]$. The area is $A=2 x^{2}+$ $4 x y=2 x^{2}+4 x(L-8 x) / 4=2 x^{2}+x(L-8 x)=x L-6 x^{2}$. Hence, $\frac{d A}{d x}=L-12 x=0$ when $x=L / 12$. This is the only critical point.

Thus, the possible global maximum is at $x=0, x=L / 8$ (the endpoints) or at $x=L /$ 12 (the critical point). The critical values are $f(0)=0, f(L / 8)=L^{2} / 32$ and $f(L / 12)=$ $(L / 12) L-6(L / 12)^{2}=L^{2}(1 / 12-1 / 24)=L^{2} / 24$. Hence, the maximum indeed occurrs at the critical point.

Answer: $L^{2} / 24$.
Problem 3. A particle is traveling along a path given by the following parametric equations: $x=t \cos (t), y=t \sin (t)$. The range is $0 \leq t \leq 4 \pi$. Thus, the path begins at the origin ($t=0$).
a) Where does the path end?
b) What is the instantaneous velocity and the speed of the particle at any given time t ?
c) For what value of t is the particle the fastest? What is the maximum speed?
d) Find all values of t where the path intersects the x-axis.
e) For all values of t found in b), find the angle the path forms with the x-axis.

Solution: a) For $t=4 \pi$ we have $x=4 \pi$ and $y=0$. Thus, it ends at $(4 \pi, 0)$.
b) We have $d x / d t=\cos (t)-t \sin (t)$ and $d y / d t=\sin (t)+t \cos (t)$. Thus, the instantaneous velocity is $v=(d x / d t, d y / d t)=(\cos (t)-t \sin (t), \sin (t)+t \cos (t))$. The instantaneous speed is the length of v and that is $\sqrt{(d x / d t)^{2}+(d y / d t)^{2}}$. We have:

$$
\begin{aligned}
(d x / d t)^{2}+(d y / d t)^{2}= & (\cos (t)-t \sin (t))^{2}+(\sin (t)+t \cos (t))^{2} \\
= & \cos ^{2} t-2 t \cos (t) \sin (t)+t^{2} \sin ^{2}(t)+ \\
& \sin ^{2}(t)+2 t \sin (t) \cos (t)+t^{2} \cos ^{2}(t) \\
= & 1+t^{2} .
\end{aligned}
$$

Thus, the instantaneous speed is $\sqrt{1+t^{2}}$ and is steadily increasing and the answer for c) is $t=4 \pi$, and the maximum speed is $\sqrt{1+(4 \pi)^{2}}$.
d) When $y=0$, i.e. $t \sin (t)=0$. This happens at $t=0, t=\pi, t=2 \pi, t=3 \pi$ and $t=$ 4π.
e) We know that if the angle is θ then $\tan (\theta)=d y / d x$. We need to evaluate this implicitly:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\sin (t)+t \cos (t)}{\cos (t)+t \sin (t)}=\frac{\tan (t)+t}{1+t \tan (t)}
$$

At $t=0$ clearly $d y / d x=0$ so the particle is moving horizontally in the positive x direction. At $t=k \pi$ we have $\tan (t)=0$ (because tan is periodic with period π) and

$$
d y / d x=t \text { for } t=k \pi, k=0,1,2, \ldots, 4
$$

so $\theta=\arctan (k \pi)$. Numerically, the value of the angle is:

t	$\arctan (t)$
0	0
π	$\arctan (\pi)=1.26=72^{\circ}$
2π	$\arctan (2 \pi)=1.41=81^{\circ}$
3π	$\arctan (3 \pi)=1.47=84^{\circ}$
4π	$\arctan (4 \pi)=1.49=85^{\circ}$

Table 1. The values of the angle the path forms with the x axis at $x=k \pi, k=0,1, \ldots, 4$.

Thus, the angle is never 90°, although it gets pretty close, and $\lim _{n \rightarrow \infty} \arctan (k \pi)=$ $\pi / 2$.

Problem 4. Find the exact value of the following limit: $\lim _{x \rightarrow \pi / 2} \frac{x-\pi / 2}{\cos (x)}$.

Solution: Since this is $\frac{0}{0}$ type limit, we try de L'Hopital. Thus,

$$
\lim _{x \rightarrow \pi / x} \frac{x-\pi / 2}{\cos (x)}=\lim _{x \rightarrow \pi / 2} \frac{1}{\sin (x)}=\frac{1}{\lim _{x \rightarrow \pi / 2} \sin (x)}=\frac{1}{\sin (\pi / 2)}=\frac{1}{1}=1 .
$$

Because the second limit exists, and $\sin (x) \neq 0$ near $x=\pi / 2$ (a necessary condition to apply de L'Hopital) also the first limit exists, and is equal to 1 .

Problem 5. The average value of f from a to b is defined as $\frac{1}{b-a} \int_{a}^{b} f(x) d x$. Find the average value of

$$
f(x)=\frac{3}{\cos ^{2}(2 x)}
$$

over the interval $0 \leq x \leq \pi / 6$.

Solution:

We need to find the antiderivative of $f(x)$. Starting from the fact that $\frac{d}{d x} \tan (x)=\frac{1}{\cos ^{2}(x)}$ we guess the antiderivative to be:

$$
F(x)=\frac{3}{2} \tan (2 x)
$$

The precise form of the constant in the front can be deduced by first trying some general C, and figuring out by differentiation that $C 2=3$.

Hence, the average is:

$$
\frac{1}{\frac{\pi}{6}}\left[\frac{3}{2} \tan (2 x)\right]_{x=0}^{x=\pi / 6}=\frac{6}{\pi} \frac{3}{2} \tan \left(\frac{\pi}{3}\right)=\frac{9}{\pi} \sqrt{3}
$$

We used the fact that the exact value of $\tan (\pi / 3)$ is $\sqrt{3}$.
Problem 6. A function $g(t)$ is positive and increasing on an interval $[a, b]$. Let t_{k} be an evenly spaced sequence of n points in $[a, b]$, with $t_{0}=a$ and $t_{n}=b$. Arrange the following numbers from smallest (1) to largest (3). Assume $n=10$ in the first two sums, while in the 3 rd sum t_{k} depends on n and $t_{k}=a+(b-a) k / n$. In each case, $\Delta t=(b-a) / n$.

$$
\text { (3) } \sum_{k=1}^{10} g\left(t_{k}\right) \Delta t \quad \underline{(1)} \quad \sum_{k=0}^{9} g\left(t_{k}\right) \Delta t \quad \underline{(2)} \lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} g\left(t_{k}\right) \Delta t
$$

Notes: The first sum is the $\operatorname{RIGHT}(n)$ with $n=10$, the Riemann sum using the right end point of each interval $\left[t_{k-1}, t_{k}\right]$ to evaluate the function. For increasing functions, this is an overestimate of the true value of the integral. Similarly, the second sum is $\operatorname{LEFT}(n)$ with $n=10$, and it is an underestimate of the integral. Hence, $\operatorname{RIGHT}(n)>\operatorname{LEFT}(n)$. Finally, the third expresson is the limit of (left) Riemann sums, as $n \rightarrow \infty$ and thus:

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} g\left(t_{k}\right) \Delta t=\int_{a}^{b} f(t) d t
$$

Hence, the third expression IS the integral, by definition.

