R reference card

Essentials

q() quit. You will be asked if "Save workspace?" type
" y " to save to .RData in current directory
<- or = assignment, e.g.: $\mathrm{x}<-13.76$
help (command1) gives syntax, details \& examples

Extensions

help.start() start browser help
apropos("topic1") lists commands relevant to topic1
help.search("topic1") like apropos, but gives short description
RSiteSearch("topic1") like help.search plus a google search on topic1 at the R-project site. Returns output to your browser.
example(command1) examples of command1
demo(package1) demos related to package1

Numbers and Matrices

v1 <- c $(1,2,3.4)$ creates a string of numbers with no dimension
$1: 3$ a string of integers $1,2,3$ (with no dimensions)
rep($\mathrm{x} 1, \mathrm{n} 1$) repeats the vector x 1 n 1 times
matrix(v1,r1,c1) make v1 into a matrix with r1 rows and $c 1$ columns.
Note: matrices are stored as stacked columns.
cbind ($\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1$) binds columns into a matrix
rbind ($\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1$) binds rows into a matrix
dim(matrix1) dimensions of matrix1
length (v 1) length of v 1
$\mathrm{m} 1[4,3]$ element of matrix m 1 in 4 th row, 3rd column m1 [,2] column 2 of matrix m1
$\mathrm{m} 1[, 2: 5]$ or $\mathrm{m} 1[, \mathrm{c}(2,3,4,5)]$ columns 2 thru 5
$\mathrm{m} 1[6: 4$,$] or \mathrm{m} 1[, \mathrm{c}(6,5,4)]$ rows 6 thru 4
$\mathrm{t}(\mathrm{m} 1)$ transpose matrix, switch rows and columns
dimnames(m1) returns or assigns names to rows/columns of m 1
$\% * \%$ matrix multiplication

Arithmetic

,,$-+ *$, and / are applied element-wise to matrices. The shorter of two vectors is recycled to the length of the longer. A warning is printed if lengths are not even multiples. Use options (warn=2) to make this an error.

- exponents, sqrt() square root
$\% / \%$ integer divide: $27 \% / \% 4=6$
$\% \%$ modulus or remainder: $27 \% \% 4=3$.

Statistics

$\max (), \min (), \operatorname{mean}(), \operatorname{median}()$, sum(), $\operatorname{var()}$ as named
$\operatorname{cor}(\mathrm{m} 1), \operatorname{cor}(\mathrm{x} 1, \mathrm{y} 1)$ show correlations within matrix m 1 or between x 1 and y 1
summary (x 1) prints quartiles, mean, min, and max
summary (data.frame) prints summary of each column
sort() sort, also see help for order ()
quantiles (x1, .9) find the 90th percentile
rnorm(n1, mean,sd) generate n 1 random normals
rchisq(), rf(), runif(), rbinom() generate random variates
pnorm(), pchisq(), pf() (CDF) Statistical tables for p-values. Use 1 - these to get upper tail probs.
qnorm(), qchisq(), qf() quantiles, inverse CDF.
by () apply function to data frame by factor e.g. by (x1, g1, mean)
apply(x1,n1,function1) apply function1 (e.g. mean) to x 1 by rows ($\mathrm{n} 1=1$) or columns ($\mathrm{n} 1=2$)
tapply(x1,list1,function1) apply function to x 1 split by list1
table(f1, f2) make a table of occurrence counts

Data Frames

read.table("file1") read data from file1 into a dataframe, which is a special type of list.
data.frame ($\mathrm{x}=\mathrm{x} 1, \mathrm{y}=\mathrm{y} 1$) creates a dataframe with 2 columns, x and y
$\mathrm{m} 1 \$ \mathrm{a} 1$ variable a1 in data frame m 1
NA missing data (use in a data file)
is.na(x1) returns true if $\mathrm{x} 1==$ NA, i.e. x 1 is missing

Input and Output

source("file1") run the commands in file1.
data.entry (x1,y1) pops up a primitive spreadsheet allowing modification to x1 or y1.
scan("file1") read a file (or keyboard input if "file" is omitted) into a single vector
sink("file1") output to file1, until sink()
write(object, "file1") writes an object to file1
write.table(dataframe1,"file1") writes a table or matrix see its options for quotes, format, and labels

Managing Variables and Objects

ls() lists all objects in workspace.
rm(object1) removes object1 from workspace
search() view your search path
attach (x1) put variables in dataframe x 1 into search path so that a1 can be used for $\mathrm{x} 1 \$ \mathrm{a} 1$.
detach (x1) remove from search path
library (nlme) load (e.g.) the nlme package
as.matrix(), as.numeric() conversions
factor(x1), ordered(x1) convert numeric $x 1$ to a factor or ordered factor
is.factor(), is.matrix(), is.numeric() look for attributes
which($\mathrm{x} 1==\mathrm{a} 1$) returns indices of x 1 where $\mathrm{x} 1==\mathrm{a} 1$

Basic Statistical Analysis

t.test ($\mathrm{x} 1, \mathrm{y} 1$) t test (1 or 2 samples)
wilcox.test (x1) Wilcoxson's median test
lm() linear models: regression, anova, ancova
aov (formula) specialized anova function
anova() compares two or more linear models (LRT).
kruskal.test (x1,g1) Kruskal-Wallis test for equal medians in x1 over groups g1.

Programming

function($\mathrm{x} 1, \mathrm{v} 1$) build a function with 2 args
e.g. sd <- function(x1) \{ sqrt(var(x1)) \}
for (i1 in 1:n1) \{ stuff \} repeat "stuff" n1 times Logical Comparisons: $==,<=,>=$ Note $2=$'s. Usage:
if (condition1) \{somestuff\} else \{otherstuff $\}$
while (condition1) \{stuff\} repeat "stuff" until condition1 is false
break jumps out of a loop
switch avoids several if statements
next jumps to end of a loop
ifelse applies condition to every element of a vector

Graphics

plot ($\mathrm{x} 1, \mathrm{y} 1$) scatterplot, alternatively: plot (y1 ~ x1, data = df1)
Options within plot(): (separate with commas) type="p" for points, "l" for lines, or "b" for both
xaxt="n" omit x axis, yaxt="n" omit y axis
lty $=2$ dashed lines use integers >1
$\mathrm{pch}=15$ set plotting character to letter or integer
main $=$ "String") add a main title
xlab = "Lab1", ylab="Lab2" set axis labels
abline (int1, slope1) add a line to plot
abline ($\mathrm{h}=0$), abline ($\mathrm{v}=22$) horiz. or vert. line
points ($\mathrm{x} 1, \mathrm{y} 1$) add more points to a plot
lines ($\mathrm{x} 1, \mathrm{y} 1$) add lines to an existing plot add smoother: lines(loess(x1, y1))
text ($\mathrm{x} 1, \mathrm{y} 1$, text1) add text to plot
axis() or mtext() to create an axis
legend(x1, y1, labels1, lty=lty1, pch = pch1) add a legend at coordinates $\mathrm{x} 1, \mathrm{y} 1$.
stem(x1), hist(x1) stem-and-leaf and histogram
boxplot(x1) box-whisker plot (single)
boxplot (x1 ~g1) box-whisker plot by group
pairs (m1) matrix of scatterplots
qqnorm(x1), qqline(x1) compare x 1 to normal dist'n
interaction.plot(Xfactor1, TraceFactor2, y1) plot means for 2-way anova

Plotting Devices

x11() open a plot window on Unix system
windows () same for MSWindows. Note different menus when plotting window is active.
postscript("file1.ps", horiz=F, height=6, width=6, paper="special") open a device to save plots to file1.ps
$\operatorname{dev} . \operatorname{off}()$ to finish the file
Jpeg, png, and other formats available, see ?Devices.

Lattice Graphics

library (lattice) load the library
xyplot (y1 ~ x1|g1) scatterplot of y1 over x1 separated by group g1
bwplot(y1 ~ g1) box-whisker plot
barchart() dotplot() stripplot() and others
trellis.par.set(theme $=$ col. whitebg()) white background

Linear Models

$\operatorname{lm}(\mathrm{y} 1 \sim \mathrm{x} 1$, data $=\mathrm{df} 1)$
If x 1 is quantitative, a regression of y 1 on x 1 .
If $x 1$ is a factor, the analysis of variance.
Formula: the first argument of $\operatorname{lm}()$ can have the form
$\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3$ main effects for 3 predictors
$\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 1: \mathrm{x} 2$ main effects and interactions shorthand versions:
$\mathrm{y} \sim \mathrm{x} 1 * \mathrm{x} 2$ or $y \sim(x 1+x 2)^{\wedge} 2$
To enforce arithmetic within a formula use $I()$ as in $\mathrm{y} \sim \mathrm{x} 1+\mathrm{I}\left(\mathrm{x} 1^{\wedge} 2\right)$ (quadratic in x 1)
lm1 <- lm(formula1) a linear models object
summary (lm1) prints coefficient estimates and F test for $H_{0}: \boldsymbol{\beta}=\mathbf{0}$
update(lm1, formula2) shortcut to modify lm1
anova (lm1, lm2) gives LRT for nested models
predict (lm1, newdata $=\mathrm{df} 2$) prediction and confidence intervals for new x values
$\operatorname{par}(\mathrm{mfrow}=\mathrm{c}(2,2))$; plot(lm1) plots 4 plots: Residuals vs Fitted to look for curvature Normal Q-Q plot to examine normality assumptions Scale-Location plot to look for non-constant variance Cook's distance plot to look for influential points

Mixed Models

lme(fixed=formula1, data=df1, random=formula2, corr = structure, weights = variance.structure) linear mixed effects Example formulae: random $=\sim 1 \mid \mathrm{g} 1$ random intercept for each group random $=\sim \mathrm{x} 1 \mid \mathrm{g} 1$ random intercept \& slope (over x 1) for each group
corr= corCompSymm(form $=\sim 1 \mid$ g1) same correlation within group
corr $=$ corAR1 (form $=\sim 1 \mid$ Subj) AR1 correlations w/in Subject
weights $=$ varIdent (form $=\sim 1 \mid$ Year) variance changes with year
weights= varPower (form $=\sim$ fitted (.) | g1) variance increases as power of $E(Y)$, powers vary with group.
gls(formula1, data=df1, corr = structure, weights = variance.structure) generalized least squares. Use corr and weights as with lme.
nlme() nonlinear mixed models

Setting Options

par (mfrow $=c(2,3)) 6$ plots $/$ page (2 rows, 3 cols)
options(contrasts $=c($ "contr.treatment", "contr. poly")) set treatment contrast option Jim Robison-Cox, August 2005 jimrc@math.montana.edu

