Problem 4.2, p. 100

by Marek Rychlik

April 1, 2010
The problem

Among 12 applicants for an open position, 7 are women and 5 are men. Suppose that three applicants are randomly selected from the applicant pool for final interviews. Let X be the number of female applicants among the final three.

a) Find the probability function for X.

b) Graph the probability function of X.

c) Find the distribution function of X.

d) Graph the distribution function of X.
Solution

a

The probability function is given by:

\[p(x) = \binom{7}{x} \binom{5}{3-x} \binom{12}{3} \]

(Later on we learn that this is the hypergeometric distribution.)

The support is \{0, 1, 2, 3\}, i.e. \(p(x) > 0 \) only for \(x = 0, 1, 2, 3 \).

b

We use R:

\[
> x <- c(0,1,2,3)
\]
> p <- choose(7,x)*choose(5,3-x)/choose(12,3); p

[1] 0.04545455 0.31818182 0.47727273 0.15909091

> barplot(p); v()
The cumulative distribution function is:

\[F(x) = \sum_{y \leq x} p(x) = \sum_{y \leq x} \frac{\binom{7}{x} \binom{5}{3-x}}{\binom{12}{3}} \]

There is no close form for it, but using R it is easy to find its values using `cumsum`.

```r
> q <- cumsum(p)
```
We produce the plot with R.

```r
> barplot(q);v()
```