1 The statement of exercise 5.8

Jerry is always early for appointments, arriving between 10 minutes early to exactly on time. The distribution function associated with X, the number of minutes early he arrives, is as follows:

$$F(x) = \begin{cases}
0, & x < 0 \\
\frac{x^2}{40}, & 0 \leq x \leq 4 \\
\frac{20x - x^2 - 40}{60}, & 4 \leq x \leq 10 \\
1, & x > 10
\end{cases}$$

a) Graph the distribution function.

b) Find the probability that Jerry arrives at least 5 minutes early.

c) Find the probability density function of X.

d) Graph the probability density function of X.

2 Solution

2.1 a

We use R. It may be instructional how it is done. First we define a function F_0 which only works correctly for scalar arguments. Then
we use Vectorize to convert it to \(F \) which behaves correctly for vector arguments. Then we simply call plot. As the amount of R code is large, we use an external script. The code is included at the end.

![Figure 1. Jerry’s distribution (c.d.f).](image)

2.2 b

This is \(P(X \geq 5) = 1 - P(X \leq 5) = 1 - F(5) \). We have

\[
F(5) = \frac{20 \cdot 5 - 5^2 - 40}{60} = \frac{100 - 25 - 40}{60} = \frac{35}{60} = \frac{7}{12} = 0.58333...
\]

Hence,

\[
1 - F(5) = \frac{5}{12} = 0.41666...
\]
2.3 c

We need to find the derivative of $F(x)$. Despite the fact that the function is defined piecewise, the pieces match so that the derivative exists and is continuous. Its shape can be described as “triangular”.

$$f(x) = \begin{cases}
0, & x \leq 0 \\
\frac{2x}{20}, & 0 \leq x \leq 4 \\
\frac{20 - 2x}{60}, & 4 \leq x \leq 10 \\
0, & x > 10
\end{cases}$$

2.4 d

![Figure 2](image)

Figure 2. Jerry’s probability density function.

3 The R code
```r
## File: jerry.R
## Author: Marek Rychlik (rychlik@u.arizona.edu)
## Description: Code to solve exercise 5.8
## Copyright: (C) Marek Rychlik, 2010, All rights reserved
##
## Define the Jerry distribution for scalar arguments
F0 <- function(x) {
  if(x<0) 0
  else if(x<4) x^2/40
  else if(x<10) (20*x-x^2-40)/60
  else 1
}

## Convert F0 to a vector function
F <- Vectorize(F0)

## Test F
F(1:4)

## Plot
png(filename="jerry_cdf.png")
plot(F,-1,11)
dev.off()

## Define the Jerry density and plot it
f0 <- function(x) {
  if(x<0) 0
  else if(x<4) 2*x/40
  else if(x<10) (20-2*x)/60
  else 0
}

f <- Vectorize(f0)
png(filename="jerry_pdf.png")
plot(f,-1,11)
dev.off();
```