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Sending random messages

Alphabet: A = {a1, a2, . . . , aN} where N is typically finite,
but sometimes N = ∞ is admissible.

Probability distribution: P : A → (0, 1], so that
∑

a∈A

P(a) = 1.

Random message: a sequence M = s1s2 . . . , sL where for
j = 1, 2, . . . , N we have sj ∈ A.

ℓ(M) will denote the length (L) of the message M.

AL (the Cartesian product) denotes the set of all messages
of length L.

A+ denotes the set of all finite messages in alphabet A, i.e.
A+ =

⋃

∞

L=0 AL.
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Bits

The term bit stands for a binary digit and it is either 0 or 1.

It is a normalized unit of information.

A random message of length N with an alphabet of L
symbols can be easily encoded in

⌈log2 L⌉ · N

bits.
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Coding and lossless coding

Definition
1 A code is a function

C : A+ → B+

i.e. a map from the set of all finite length messages in
alphabet A to the set of all finite length messages in
another alphabet B.

2 A code C : A+ → B+ is called a lossless code if C is 1:1
(but possibly not onto).
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Comments on lossless coding

Losslessness implies that the encoded message can be
uniquely decoded.

Not every message in the target alphabet may be decoded.

In practice, the decoding algorithm may decode some
sequences which are not in the image C(A+), i.e. may
perform a mapping

D : S ⊆ B+ → A+

so that S ⊇ C(A) and

D ◦ C = idA+ .
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Symbol codes

Definition
A symbol code is a mapping

C : A → B+

of the alphabet to messages in another alphabet.

The extension of the symbol code C is a code obtained by
concatenation:

s1s2 . . . sL → C(s1)C(s2) . . . C(sL).

A symbol code is lossless iff C is 1:1.

A binary code is a code where the target alphabet B is
{0, 1}.
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Simple properties of symbol codes

The resulting message has typically different length from
the original message.

We may define the length function of the code:

a 7→ ℓ(C(a)).

The code is uniform if the lengths of C(s) are identical for
all s ∈ A, i.e. ℓ ◦ C is constant.
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Simple properties of symbol codes

The resulting message has typically different length from
the original message.

We may define the length function of the code:

a 7→ ℓ(C(a)).

The code is uniform if the lengths of C(s) are identical for
all s ∈ A, i.e. ℓ ◦ C is constant.
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Trivial uniform binary code

Example

The alphabet A = {a, b, c}. Three letters can be mapped 1:1 to
sequences of 2 bits, e.g:

a → 00

b → 10

c → 01

Thus,
abcba → 0010011000

The decoding is also trivial: we consider pairs of consecutive
digits and recover the original symbol by inverse lookup.
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Non-uniform codes

Non-uniform codes can result in shorter messages by
assigning shorter codes to more probable messages.

The theory of non-uniform codes connects the
combinatorics of coding with probability theory.
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An example of an optimal code

Example

Let A = {a, b, c, d}. Let

P(a) =
1
2

, P(b) =
1
4

, P(c) = P(d) =
1
8
.

The trivial uniform binary code yields two bits per symbol i.e. a
message of length L is coded in exactly 2L bits.
The following code yields only 1.75 bits per symbol in every
message which has exactly 1/2 a’s, 1/4 b’s and 1/8 of c’d and
d’s:

a → 0, b → 10, c → 110, d → 111.
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Notes on the compression example

We note that ℓ(C(s)) = − log2 P(s) for this code. This is an
example of a Huffman code.

A message which has exactly 1/2 a’s, 1/4 b’s and 1/8 of c’d
and d ’s is coded in

L
2
· 1 +

L
4
· 2 + 2 ·

L
8
· 3 = 1.75L bits

The invertibility of the code follows from the prefix property.

If the message composition does not conform to the
probability distribution, it still can be uniquely decoded, but
the length of the encoded message may be longer then
1.75L.
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The prefix property

Definition

We say that a symbol code C : A → B+ has the prefix property
if the code of each symbol is not a prefix of the code of any
other symbol.

Every prefix code is lossless.

There are lossless symbol codes which do not have the
prefix property. The disadvantage of such codes is that
they require looking ahead in the code before decoding a
symbol.

Marek Rychlik CGB



Fundamentals of coding theory
Shannon lower bound

Shannon’s Source Coding Theorem

Alphabets and messages
Coding
Symbol codes
The Prefix Property

An decoding example

Alphabet: A = {a, b, c, d}.

Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110

Decoded message:
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110
. . .

Decoded message:
. . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110
0 . . .

Decoded message:
a . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110
01 . . .

Decoded message:
a? . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110
010 . . .

Decoded message:
ab . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110
0101 . . .

Decoded message:
ab? . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110
01011 . . .

Decoded message:
ab? . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110
010110 . . .

Decoded message:
abc . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110

0101101 . . .

Decoded message:
abc? . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110

01011011 . . .

Decoded message:
abc? . . .
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An decoding example
Alphabet: A = {a, b, c, d}.
Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110

010110111 . . .

Decoded message:
abcd . . .
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An decoding example

Alphabet: A = {a, b, c, d}.

Symbol codes:

a → 0

b → 10

c → 110

d → 111

Code: 0101101110

0101101110

Decoded message:
abcda
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The expected length of the code

Definition

Given a probability distribution P : A → [0, 1] on the alphabet A,
the expected length of a binary symbol code C : A → {0, 1}+ is
defined as:

E(ℓ ◦ C) =
∑

a∈A

ℓ(C(a)) · P(a).
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Kraft inequality (extended variant)

Theorem

If A is countable and C : A → {0, 1}+ is a lossless symbol code
then

∑

a∈A

2−D(a) ≤ 1.

where D(a) = ℓ(C(a)).
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The prefix tree of a code

Definition

The prefix tree T (C) of the code C is defined as follows:

The nodes of the tree T (C) are in 1:1 correspondence to all
prefixes of all codes {C(a)}a∈A.

The parent of a node of a prefix b0b1 . . . bd−1bd of length
d , (bi ∈ {0, 1}, d ≥ 1) is the node corresponding to the
prefix of length d − 1, i.e. b0b1 . . . bd−1.

The full codes C(a) are there own prefixes, and are not
prefixes of any other codes; thus they are in 1:1
correspondence with the leaves of the tree.

The root of the tree corresponds to the empty code.
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An example of a prefix tree

Example

Alphabet: A = {a, b, c, d}.

C defined by: a → 0, b → 10, c → 110, d → 111.

∅

0(a) 1

10(b) 11

110(c) 111(d)
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An alternative way to draw a prefix tree

Example

Alphabet: A = {a, b, c, d}.

C defined by: a → 0, b → 10, c → 110, d → 111.

•
0 1

a •
0 1

b •
0 1

c d
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Weighted binary trees

Definition
1 A weighted binary tree is a pair (T , w) where T an

arbitrary binary tree the number w : nodes(T ) → R
+ is a

weight function, assigning weight w(n) to every node of T .
2 The total weight operator of the tree is defined as

WT (w) =
∑

n∈nodes(T )

w(n).

The total weight may be finite or infinite.
3 A depth-weighted binary tree is an arbitrary binary tree T

with the weight of every leaf equal to 2−depth(l). All inner
nodes are assigned weight of 0.
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An example of a depth-weighted tree

Example

Alphabet: A = {a, b, c, d}.

C defined by: a → 0, b → 10, c → 110, d → 111.

•
0 1

a(1/2) •
0 1

b(1/4) •
0 1

c(1/8) d(1/8)
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Kraft Inequality — Proof
We define a sequence of weight functions
wk : nodes(T ) → R

+, k = 0, 1, . . ., by induction:
1 Weight function w0 assigns weight 1 to the root and weight

0 to all other nodes.
2 If weight function wk is defined then wk+1 is obtained by

dividing the weight wk of nodes at depth k amongst the
children at depth k + 1.
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More precisely.

wk+1(n) =















wk(parent(n))

|children(parent(n))|
if depth(n) = k + 1,

0 if depth(n) = k and n is not a leaf,
wk (n) otherwise.

where |A| stands for cardinality of a set A.

By induction, it follows that wk (n) ≥ 2−depth(n) if node n
satisfies at least one of the following conditions:

1 n ∈ leaves(T ) and depth(n) ≤ k .
2 depth(n) = k .
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An example of a depth-weighted tree

Example

Alphabet: A = {a, b, c, d}.

C defined by: a → 0, b → 10, c → 110, d → 111.

1
0 1

a(0) 0
0 1

b(0) 0
0 1

c(0) d(0)

k = 0
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An example of a depth-weighted tree

Example

Alphabet: A = {a, b, c, d}.

C defined by: a → 0, b → 10, c → 110, d → 111.

0
0 1

a(1/2) 1/2
0 1

b(0) 0
0 1

c(0) d(0)

k = 1
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An example of a depth-weighted tree

Example

Alphabet: A = {a, b, c, d}.

C defined by: a → 0, b → 10, c → 110, d → 111.

0
0 1

a(1/2) 0
0 1

b(1/4) 1/4
0 1

c(0) d(0)

k = 2
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An example of a depth-weighted tree

Example

Alphabet: A = {a, b, c, d}.

C defined by: a → 0, b → 10, c → 110, d → 111.

0
0 1

a(1/2) 0
0 1

b(1/4) 0
0 1

c(1/8) d(1/8)

k = 3
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Wikipedia’s version of Fatou’s lemma

Theorem

If f1, f2, . . . is a sequence of non-negative measurable functions
defined on a measure space (S,Σ, µ), then

∫

S
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫

S
fn dµ . (1)

On the left-hand side the limit inferior of the fn is taken
pointwise.

The functions are allowed to attain the value infinity and
the integrals may also be infinite.
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Fatou’s lemma for series

Corollary

If f1, f2, . . . is a sequence of non-negative measurable functions
defined on a countable set S, then

∑

s∈S

lim inf
n→∞

fn(s) ≤ lim inf
n→∞

∑

s∈S

fn(s). (2)
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Kraft Inequality — Proof (conclusion)

The limit w∞(n) = limk→∞ wk (n) exists and it is greater or
equal 2−depth(n) for n ∈ leaves(T ) and 0 otherwise.
By Fatou’s Lemma:

1 = lim inf
k→∞

∑

n∈nodes(T )

wk(n) ≥
∑

n∈nodes(T )

lim inf
k→∞

wk (n)

=
∑

n∈nodes(T )

w∞(n)

=
∑

n∈leaves(T )

w∞(n)

≥
∑

n∈leaves(T )

2−depth(n).
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Complete binary trees and codes

Definition

A binary tree is called a complete binary tree if every node is
either a leaf or it has exactly two children.

Definition

A binary code C is called a complete code if its prefix tree is a
complete binary tree
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Equality in Kraft Inequality

Corollary

If A is countable and C : A → {0, 1}+ is a lossless symbol code
then

∑

a∈A

2−D(a) = 1.

iff the prefix tree of C is a complete binary tree.
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Shannon source coding theorem

Theorem

(Shannon, 1948) If a binary symbol code C : A → {0, 1}+ is
lossless then

E(ℓ ◦ C) ≥ H(P)

where H(P) is the Shannon entropy of the distribution P:

H(P) =
∑

a∈A

P(a)(− log2 P(a))

The quantity I(a) = − log2 P(a) is interpreted as the amount of
information contained in one occurrence of symbol a.
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Proof

Let T be the prefix tree of the code C.

Let us define the probability weight of the node n:
P(n) = P(a) iff n is the node corresponding to C(a).

Clearly, if D(n) = depthT (n) then

E(ℓ ◦ C) =
∑

n∈leaves(T )

D(n)P(n)
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Outline of the proof - continued

Observe that the inequality:

∑

n∈leaves(T )

D(n)P(a) ≥
∑

n∈leaves(T )

P(n)(− log2 P(n))

is equivalent to

∑

n∈leaves

P(n) log2
1

2D(n)P(n)
≤ 0
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Strictly concave functions

A function f : (a, b) → R is strictly convex if for every
x , y ∈ (a, b) and t ∈ (0, 1):

f (tx + (1 − t)y) > tf (x) + (1 − t)f (y).

If t1, t2, . . ., tk is a sequence such that tj ≥ 0 and
∑k

j=1 tk = 1 then

f





k
∑

j=1

tkxk



 ≥
k

∑

j=1

tj f (xk ).

The inequality is strict unless f (xj) are all identical for all j
such that tj 6= 0.

Marek Rychlik CGB



Fundamentals of coding theory
Shannon lower bound

Shannon’s Source Coding Theorem

Lower Bound
Upper Bound

Outline of the proof - continued

Use strict concavity of log2 to show:

∑

n∈leaves(T )

P(n) log2
1

2D(n)P(n)
≤ log2





∑

n∈leaves(T )

P(n)
1

2D(n)P(n)





= log2





∑

n∈leaves(T )

2−D(n)



 = 0.
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Equality in the fundamental theorem

Corollary

If E(ℓ ◦ C) = H(P) then for all a ∈ A P(a) = 2−D(a) where D(a)
is a certain integer.
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Optimal coding when probabilities are powers of 2

Problem

If all probabilities P(a) are powers of 2 then there exists an
lossless binary code C : A → {0, 1}+ such that

E(ℓ ◦ C) = H(P).
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The existence of nearly optimal codes

Theorem

(Shannon-Fano, 1948) For every alphabet A and a distribution
function P : A → (0, 1] there exists a binary code
C : A → {0, 1}+ such that:

H(P) ≤ E(ℓ ◦ C) ≤ H(P) + 1.
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