Maxima 5.9.1 http://maxima.sourceforge.net Using Lisp CMU Common Lisp 19a Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. This is a development version of Maxima. The function bug_report() provides bug reporting information. (%i1) diff(%e^x/(1+x), x, 3); x 3 x 2 x x e LOG (e) 3 e LOG (e) 6 e LOG(e) 6 e (%o1) ---------- - ------------ + ----------- - -------- x + 1 2 3 4 (x + 1) (x + 1) (x + 1) (%i2) stringout("file_with_a_formula.txt", %o1); (%o2) /home/rychlik/481/InClassFiles2005/Maxima/file_with_a_formula.txt (%i3) ratsimp(%o1); x 3 3 x 3 2 2 (%o3) (e LOG (e) x + e (3 LOG (e) - 3 LOG (e)) x x 3 2 + e (3 LOG (e) - 6 LOG (e) + 6 LOG(e)) x x 3 2 4 3 2 + e (LOG (e) - 3 LOG (e) + 6 LOG(e) - 6))/(x + 4 x + 6 x + 4 x + 1) (%i4) diff(%e^x/(1+x^2), x, 3); x x x x %E 3 %E 6 %E 6 %E (%o4) ----- - -------- + -------- - -------- x + 1 2 3 4 (x + 1) (x + 1) (x + 1) (%i5) ratsimp(%); 3 x (x + 3 x - 2) %E (%o5) -------------------------- 4 3 2 x + 4 x + 6 x + 4 x + 1 (%i6) grind(%o4); %E^x/(x+1)-3*%E^x/(x+1)^2+6*%E^x/(x+1)^3-6*%E^x/(x+1)^4$ (%o6) DONE (%i7) fortran(%o4); EXP(x)/(x+1)-3*EXP(x)/(x+1)**2+6*EXP(x)/(x+1)**3-6*EXP(x)/(x+1)**4 (%o7) DONE (%i8) diff(%e^x/(1+x^2), x, 3); x x x 2 x x 3 x %E 6 x %E 6 %E 24 x %E 24 x %E 48 x %E (%o8) ------ - --------- - --------- + --------- + --------- - --------- 2 2 2 2 2 2 3 2 3 2 4 x + 1 (x + 1) (x + 1) (x + 1) (x + 1) (x + 1) (%i9) fortrran(%); x x x 2 x x %E 6 x %E 6 %E 24 x %E 24 x %E (%o9) fortrran(------ - --------- - --------- + --------- + --------- 2 2 2 2 2 2 3 2 3 x + 1 (x + 1) (x + 1) (x + 1) (x + 1) 3 x 48 x %E - ---------) 2 4 (x + 1) (%i10) fortran(%o8); EXP(x)/(x**2+1)-6*x*EXP(x)/(x**2+1)**2-6*EXP(x)/(x**2+1)**2+24*x** 1 2*EXP(x)/(x**2+1)**3+24*x*EXP(x)/(x**2+1)**3-48*x**3*EXP(x)/(x* 2 *2+1)**4 (%o10) DONE (%i11) tex(%o8); $${{e^{x}}\over{x^2+1}}-{{6\,x\,e^{x}}\over{\left(x^2+1\right)^2}}-{{ 6\,e^{x}}\over{\left(x^2+1\right)^2}}+{{24\,x^2\,e^{x}}\over{\left(x ^2+1\right)^3}}+{{24\,x\,e^{x}}\over{\left(x^2+1\right)^3}}-{{48\,x^ 3\,e^{x}}\over{\left(x^2+1\right)^4}}\leqno{\tt (\%o8)}$$ (%o11) (\%o8) (%i12)