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1 Damped Hill’s equation

Consider the damped Hill’s equation [1]:

2
372 + ky' + 2(6o + 01 cos(2x) + 5 cos(4z) + ... + 0, cos(2nz) + ... )y = 0.

Let
V(z) = 2(6o + 601 cos(2z) + 65 cos(4z) + ... + O, cos(2nz) + ...)

in which case we can write this equation as:

d2y '
w + ky + V(.Z)y =0.

2 Stability and instability

The damped Hill’s equation is called stable, if all solutions y(x) remain bounded
for all z > 0. If at least one solution can grow to infinity as £ — oo, the equation
is called unstable.



3 Analysis

Let us rewrite this linear second order equation as a system of first order equa-
tions, as we usually do:
dy
dx
dz

dz

Let us also rewrite this system in matrix form, using the notation:

w:[g].

= Z

= —V(x)y —kz

The resulting equation is:

dw 0 1
- = . 1
d [ ~V(z) -k ] v (L)
The solution of a general linear equation
‘;—Z = A(z)w )

can be written down in the form:
w(z) = U(x)wo

where wy is an initial condition, where U(z) is the fundamental matriz. The
fundamental matrix for a 27-periodic system, like the one we are dealing with,
satisfies the equation:

U(2mn) = (U(27))"

i.e. in order to examine the solution for multiples of 27 we need to raise the
matrix U(27) to increasingly high powers. As between the times 27n there is
less than 27 time to blow up, the solution of the Hill’s equation blows up only
when the eigenvalues of U(27) are not within the unit circle, i.e. there is an
eigenvalue A satisfying |A| > 1.

In order to determine the matrix U(27) we need the capability to solve
the linear equation (1) for two special initial conditions wy = e; = (1,0) and
wo = e; = (0,1). This is because the fundamental matrix is also known to solve
the matrix initial value problem:

dy
— = A(2)Y,
=A@y,

Y(0) = I

where [ is the symbol for the identify matrix. This implies that w = Ye; and
w = Yey are solutions of the differential equation (2) with the initial conditions
wo = €1 and wg = ea, respectively.



Example 1 A simple example of the above theory is obtained when V (z) is
constant, i.e. the harmonic oscillator, and £ = 0 (no damping). It is typical
to write V(z) = —w?, where w > 0 is a real number. In this case, the Hill’s
equation is written as y” = —w?y. The corresponding system of first order

equations is:
dw 0 1

The formula for the solution of the harmonic oscillator is well known:

!
Yy = yo cos(wz) + % sin(wz).
w

Differentiating over z, we obtain the formula for the derivative:
y' = —yowsin(wz) + yg cos(w).

This formula can be rewritten in matrix form:

[ y ] _ [ cos(ws) L sin(we) ] [ Yo ] |

z —wsin(wz) cos(wz) Yo
This last formula contains the fundamental matrix for the system (3):

oy = [ ) bt ]

—wsin(wz) cos(wzx)

There are (at least) two ways to calculate this matrix with Octave. One is based
on the exponential map. We recall that the solution to the differential equation

dw
e Aw
can be written as w(z) = exp(zA)wp. Thus, U(z) = exp(zA) is the fundamental
matrix. For w = 1 the following Octave script does the trick of computing U (27).
octave> exp(2*pi*[0,1;-1,0])
ans =
1.0000e+00 5.3549e+02
1.8674e-03 1.0000e+00
octave>
The other method uses 1insolve, which solves all equations, not only linear
ones. This is how we set up the calculation:
octave> function wdot=hosc(w) wdot(1l) = w(2); wdot(2)=-w(1); endfunction
octave> coll=lsode("hosc",[1;0],[0,2*pil) (2,:)’

coll =
1.0000e-00
-1.8278e-07

octave> col2=1sode("hosc",[0;1],[0,2*pil) (2,:)’



col2 =

1.8278e-07

1.0000e-00

octave> U=[coll,col2]
U=

1.0000e-00 1.8278e-07
-1.8278e-07 1.0000e-00
octave> tmdisp(U)

1 1.828e — 07
—1.828e — 07 1

octave>

Our comment on the subscripts (2,:) to the output of 1sode is that the
values of w for consecutive times (supplied in the third argument to lsode)
are the rows of the matrix output by this command. Thus, we need to extract
the second row, and, moreover, we need to take the transpose to turn it into a
column vector (accomplished with the prime). We note that U = I up to the
numerical error.

4 The criterion of stability

Once the matrix U = U(2x) is found, the stability of the system can be deter-
mined by examining the eigenvalues of U. Let A; and A2 be the eigenvalues.
We recall that these are the roots of the characteristic polynomial of U, i.e.

det(A\ — U) = A2 — Tr(U)A + det(U).

This formula is valid for 2 x 2 matrices. We recal that Tr(U) stands for the sum
of the diagonal entries of U and det(U) = Ay )\y is the determinant of U. One
learns in differential equations that:

2 det(U(z)) = Te(A(w)) det (U ()

i.e. det(U(z)) is a solution of an ordinary first order differential equation which
we can solve by separation of variables, and obtain:

det(U(z)) = / " Te(A(6))de.

For the case of the damped Hill’s equation, Tr(A(£)) = —k and thus det(U(x)) =
e . Hence, for £ = 2m we have this identity:

)\1)\2 = 6_27rk.

Especially interesting is the case of k = 0, as then A1 Ao = 1.
Stability requires that |A;| < 1 for both eigenvalues, i.e. for j =1, 2.



The quadratic formula gives us an explicit equation for the eigenvalues:

Aj = %(Tr(U) + \/(Tr(U))2 — 4e-27k

As a result, it is fairly easy to determine the condition of stability. Let us
distinguish the following two cases:

A. In this case, the eigenvalues are complex. This is equivalent to:

| Te(U)| < 2¢™™F (4)

The formula for the eigenvalues in this case is:

N = 5(Te(U) £ iy/4e—2m — (Te(D))?

DN | =

When condition (4) is satisfied, [\;| = 3/(Tr(U))? + (4e=27F — Tr(U)?) =
e~ ™. Hence, if k¥ > 0, both eigenvalues are < 1 in absolute value, and the
system is stable.

. In this case, the eigenvalues are real. The equivalent condition is
[ Te(U)| > 2¢ (5)

The larger modulus of one of the eigenvalues is

SUTR(@)] 4 \(Te(0))? — 4e-27%)

When this number is < 1, we have stability, and otherwise the system is
unstable.
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