
1

1COSC 435 Computer Graphics · Spring 2002

Scan-Conversion

2COSC 435 Computer Graphics · Spring 2002

Scan-Conversion
• figuring out what pixels have to be colored 

in order to draw a geometric primitive on 
the screen
– lines
– circles/ellipses
– polygons
– text

3D model3D model3D model3D model

2D image on 2D image on 2D image on 2D image on 
screenscreenscreenscreen

clippingclippingclippingclippingcamera camera camera camera 
placementplacementplacementplacement rasterizationrasterizationrasterizationrasterization

modeling 
transformation

viewing 
transformation

workstation 
transformationprojection

scan 
conversion

3COSC 435 Computer Graphics · Spring 2002

Scan-Conversion Overview

• lines
– DDA
– midpoint/Bresenham

• circles
– midpoint circle

• filled polygons
– scan-line

• antialiasing

4COSC 435 Computer Graphics · Spring 2002

Scan-Conversion: Lines

the task: draw a line on a raster screen 
between two points

• mathematical line vs. rasterized line
– jaggies

revised task: given two integer-coordinate 
points on the plane, determine what pixels 
on a raster screen should be on to create a 

picture of a unit-width line segment 
between those points

5COSC 435 Computer Graphics · Spring 2002

A Simplification

• we’ll consider only lines 
with slope 0<m<1
– horizontal and vertical 

lines are special cases
– diagonal lines (m = ±1) 

can be special-cased or 
included in general case

– can use symmetry to 
adapt solution for 
0<m<1 for m > 1 and 
negative slopes

6COSC 435 Computer Graphics · Spring 2002

Another Simplification

• consider line with slope 
0<m<1
– generally only one pixel per 

column inside the unit-width 
line segment

– we’ll draw just one pixel per 
column, using the closest to the 
“true line” if there are two choices

– vertical distance from point to 
line is proportional to 
perpendicular distance



2

7COSC 435 Computer Graphics · Spring 2002

Lines: Basic Algorithm

• find the equation of the line connecting 
endpoints P & Q

• starting with the leftmost point P,   
xi = xi-1+1 and yi = m•xi + b

• color pixel at (xi,round(yi))

• each iteration requires floating-point 
multiplication

8COSC 435 Computer Graphics · Spring 2002

Lines: DDA Algorithm

• determine slope of the line connecting 
endpoints P & Q

• starting with the leftmost point P, 
xi = xi-1+1 and yi = yi-1+m

• color pixel at (xi,round(yi))
• each iteration still requires floating-point 

arithmetic and rounding
• repeated summing of fractional values 

can lead to roundoff problems for very 
long lines

9COSC 435 Computer Graphics · Spring 2002

Lines: Midpoint Line Algorithm

• observation: the next pixel colored is 
always either E or NE of the current pixel

• need a way to decide between the choices…
– (and with only using integer arithmetic)

• let’s consider the midpoint between the two 
choices…

10COSC 435 Computer Graphics · Spring 2002

The Midpoint
• if the line goes 

between the midpoint 
and the NE point, NE 
is closer

• if the line goes 
between the midpoint 
and the E point, E 
point is closer

(x,y) (x+1,y)

(x+1,y+1)

(x+1,y+½)

11COSC 435 Computer Graphics · Spring 2002

Equation of a Line

• one way to express a line
y = mx+B = (∆y/ ∆x)x+B

– m is the slope, B is the y intercept

• another way of expressing a line
F(x,y) = ax+by+c = 0
rearranging the first equation yields 

(∆y)x - (∆x)y+(∆x)B = 0
– F(x,y) = 0 if (x,y) is on the line
– F(x,y) < 0 if (x,y) is above the line
– F(x,y) > 0 if (x,y) is below the line

12COSC 435 Computer Graphics · Spring 2002

Putting the Bits Together
• if midpoint is below the line, then line is 

between midpoint and NE
– if F(xm,ym) > 0, choose NE

• if midpoint is above the line, then line is 
between midpoint and E
– if F(xm,ym) < 0, choose E

• if midpoint is on the line, then line goes 
through the midpoint 
– if F(xm,ym) = 0, choose either E or NE (but be 

consistent)
• we’ll write F(xm,ym) as d and call it the decision variable



3

13COSC 435 Computer Graphics · Spring 2002

Notation Roundup
• line endpoints are P=(xp,yp) and 

Q=(xq,yq)
– ∆x = xq-xp , ∆y = yq-yp
– P and Q have integer coordinates

• pixels are colored one column at a time
– (xk,yk) are the coordinates of the pixel colored 

in column k, 0 ≤ k ≤ ∆y (k is an integer)
• xk+1 = xk+1

– (x0,y0) = P, (x∆y,y∆y) = Q 
– dk = F(xk-1+1,yk-1+1/2) 

• dk is decision variable used to choose where pixel in 
column k goes

14COSC 435 Computer Graphics · Spring 2002

An Algorithm Based on the Midpoint

• to compute (xk+1,yk+1)…
– midpoint is (xk+1,yk+1/2)
– compute dk+1 = F(xk+1,yk+1/2)
– xk+1 = xk+1
– if dk+1 > 0, yk+1 = yk+1
– otherwise, yk+1 = yk

• this works, but computing 
F(xk+1,yk+1/2) involves several 
floating-point additions & multiplications
– we’re trying to eliminate floating point!

15COSC 435 Computer Graphics · Spring 2002

Making It Incremental

• if dk+1 = dk+∆ we could save work

dk+1-dk = F(xk+1,yk+½) – F(xk-1+1,yk-1+½)          
= (∆y)(xk+1)-(∆x)(yk+½)+(∆x)B –

[(∆y)(xk-1+1)-(∆x)(yk-1+½) 
+(∆x)B]                                                

= (∆y)(xk-xk-1)-(∆x)(yk-yk-1)                  
= (∆y)(xk-1+1-xk-1)-(∆x)(yk-yk-1)          
= ∆y-(∆x)(yk-yk-1) = ∆

• relationship between yk and yk-1 depends on 
whether we chose NE or E pixel for (xk,yk)

xk = xk-1+1

16COSC 435 Computer Graphics · Spring 2002

Making It Incremental
dk+1-dk = ∆y-(∆x)(yk-yk-1) 

– relationship between yk and yk-1 depends on 
whether we chose NE or E pixel for (xk,yk)

• if E… yk = yk-1

dk+1-dk = ∆y = ∆E

• if NE… yk = yk-1+1
dk+1-dk = ∆y-(∆x)(yk-1+1-yk-1)                     

= ∆y- ∆x = ∆NE

• ∆E and ∆NE are constants…

17COSC 435 Computer Graphics · Spring 2002

The Incremental Approach

• to compute (xk+1,yk+1)…
– assume dk+1 has already been computed
– xk+1 = xk+1
– if dk+1 > 0, yk+1=yk+1 and 

dk+2=dk+1+∆NE
– otherwise, yk+1=yk and dk+2=dk+1+∆E

18COSC 435 Computer Graphics · Spring 2002

Initial Values

• but what are x0, y0, d1?
– x0 and y0 are the coordinates of the lower left 

endpoint
d1 = F(x0+1,y0+1/2)                                   

= (∆y)(x0+1)-(∆x)(y0+½)+(∆x)B          
= (∆y)x0-(∆x)y0+(∆x)B+∆y-∆x/2           
= F(x0,y0)+∆y-∆x/2 

– (x0,y0) is an endpoint and thus on the line, so 
F(x0,y0) = 0
d1 = ∆y-∆x/2

– but ∆x/2 may not be integer!



4

19COSC 435 Computer Graphics · Spring 2002

Making It Integer
d1 = ∆y-∆x/2

• d1 may not be integer
– so, multiply by 2!  (∆y and ∆x are integers)
– this doesn’t affect the sign of d, which is all 

that matters

• we now use dk+1 = 2•F(xk+1,yk+1/2)
– so d1 = 2∆y-∆x
– this also means that ∆E and ∆NE are twice as 

big: ∆E = 2∆y and ∆NE = 2∆y-2∆x
20COSC 435 Computer Graphics · Spring 2002

0 < m < 1 Midpoint Line Algorithm
• compute 2∆x, 2∆y, and 2∆y-2∆x 
• initialize (x,y) to the lower leftmost point 

and d = 2∆y-∆x
• color pixel (x,y)
• repeat…

– increment x
– if d > 0, increment y and add                     

∆NE = 2∆y-2∆x to d
– otherwise, add ∆E = 2∆y to d
– color pixel (x,y)

21COSC 435 Computer Graphics · Spring 2002

Midpoint Line Summary

• algorithm is integer & incremental (for 
speed)

• simplifications
– one pixel per column (a hack to make it 

easier)
– only consider 0 < m < 1 (other cases by 

symmetry)
• key observation: given pixel colored in 

column k, next pixel is either E or NE
– need a decision variable to use to make choice

22COSC 435 Computer Graphics · Spring 2002

Midpoint Line Summary #2
• decision variable

– use sign (+, -, 0) to make choice
– the sign of F(x,y) tells which side of the line 

point (x,y) is on 
– determine what side of line midpoint is on

• if line is between midpoint and E, E is closer to 
line i.e. choose E if F(xm,ym) < 0

• ditto for NE i.e. choose NE if F(xm,ym) > 0
• making it integer & incremental

– use 2F(x,y) as decision var instead of F(x,y)
– don’t recompute F(x,y) each time – instead, 

increment previous value by some amount


