Scan-Converslon

Scan-Conversion

* flguring out what pixels have to be colored
in ovder to draw a geometric primitive on
the screen

- lines

- cireles/ellipses -

conversion

- polygons

- text

'F':aumwt o
modeling ctation

viewing

™ transformation

transformation — projection —>

Scan-Conversion Over/iew

lines

- DDA

- midpolnt/Bresenhan
- clreles

- midpoint civcle
- filled polygons

- scan-line

antialinsing

Scan-Conversion: Lines

the task: draw a Line on o raster screen
between two polnts

mathematical Line vs. rasterized Line
- jagotes
revised task: given two tnteger-coordinate
polnts on the plane, determine what pixels
on a vaster screen should be on to create a
pleture of a unit-wiolth line segment
between those points

A Simeplification
< we'll constder ong lines

with slope 0<m <1

- horlzontal and vertical
lines ave special cases

- dingonal lines (m = £1) TT—

can be special-cased or
tncluded in general case
- can use symmetry to
aclapt solution for
o<m <1 for m > 1 and
negative slopes

Awnother Stmplification

© consioler Line with slope

o<m <1

- generally only one pixel per
column instde the unit-width
line segment p
- we'll draw just one pixel per s /
colwmn, using the closest to the e
“true Line” Uf there ave two cholees
- vertical distance from polnt to
Line Ls proportional to
pevpendicular distance




Lines: Basic Algorithm

- flnol the equation of the line connecting
endpoints P § &

- starting with the leftmeost polnt P,
X = X trand Yy = wmex + b

. coLovp'LxeL at (x, rounot (@))

- each ttevation vequires floating-point
multiplication

Lines: DDA Algorithm

- determine slope of the line connecting
endpoints P § &

- starting with the leftmeost polnt P,
X=X trand Yy = Yt

= color pixel at (<, round(y,))

- each iteration still requires floating-point
arithmetic and rounding

- repeated summing of fractional values
cawn Lead to roundoff problems for very
long lings

Lines: Midpoint Line Algorithm

* observation: the next pixel colored is
always either € or NE of the curvent pixel

© need a way to declde between the choices...
- (and with only usbng tnteger avithmetic)

- let's conslder the mldpoint between the two
chotees...

The Midpoint

- if the line goes
between the miopoint
and the NE point, NE
Ls closer

- if the line goes
between the midpoint
and the € point, €
point s closer

(x+1,u+1)
o

- (x+1,5+!/:)

©) O
xy) (x+1y)

Equation of a Line

©one way to express a line
Y= mx+® = (Ay/ A)x+B
- mis the slope, B is the Y intercept

© another way of expressing a line
Floy) = axtbyte =0
rearranging the first equation yields
Ayx - (AJy+Ae =o
- Floy) = o if (xy) is on the line
- Floy) <oif (xy) is above the Line
- Floy) > 0if (xy) is below the Line

Putting the Bits Together

i wldpoint Ls below the Line, thew line is
between widpoint and NE
- f F(XwY,) > O, choose NE
i wlopoint Ls above the Line, thew Line is
between midpoint ano €
- i FluY,) <0 choose €
© f wldpoint Ls on the line, thew Line goes
through the midpoint
~ if F5,,Y,) = O, choose either € or NE (but be
conslstent)
© welll write F(x,,,Y,) as d and call it the decision variable




Notatlon Round wp

. évie (evw{po)mts are P= (/\P,gp) and
= WYalq
m A= Xk, AY = Yol
- P and @ have integer coordinates
- pixels are colored one columm at a time
- (Q,m) ave the coovdinates of the pixel colored
incolummn ik, 0 Sk <Ay (Risan Integer)
* Kiggs = XK T1
_ (Xo/gg) =P ("Ag'UA@) =
- dy = Flxe, t1Ye, +1/2)
- ol is decision variable used to choose where pixel in
colummn k goes

An Algorithm Based on the Midpoint

" to compute (XgypYgrd)
- wlolpoint is (xk-&-i,gk-&-i/:z)
- compute d i, = Fx,+1,Y,+1/2)
= Kogs = X t1
= U Aers > 0 Yows = Yot
- otherwise, Yoy = Ye

* this works, but computing
Fxet1,y,+1/2) bnvolves several
floating-point additions § multiplications

- we're trying to eliminate floating point!

Making It Incremental
©if oy, = dotA we could save work

Oyt = FlxFL Y +22) = Fx +1,Y,  +42)
= (Ag) (X +1)-(Ax) (@g-&-i/z) +(A)®B -
LAY) (K +1) - (AX) (Yo +42)
+ (A ®]
= (AY) KX )= (AX) (YY)
= (Ag) O<Q.1+1’XR.1)’(M) (H‘,{gyg.i)
= A(\j’ (Ax) ((\j‘Q’g}Q,l) =A

X = X, 1

- relationship between Ye ano Ykt depends on
whether we chose NE or € pixel for (oY)

Making It Incremental

dm—fdn = A@’(AX) (5@5R,1)

- relationship between Yy, and Y, depends on
whether we chose NE or € pixel for (x,Y)

: L{E“' UQ = 5&»1
Heys-tle = Ay = A
T UNEL Y, = Yo, T

-0y = AY-(A) (Y, F1-Y )
= A5> Ax = ANE

< Agand A, ¢ ave constants...

The neremental Appromah

" to compute (XYl
- assuwme o,y has already been computed
~ Ketr T Xk+1
= U ders > 0, Ypry =Yt and
Q+2=dk+1+ NE
- otherwise, Yo Y, and dg =0,y A

Intttal values

© but what ave x,, Y, d,?
- X, and Y, ave the coordinates of the lower Left
endpolnt
d, = Flx,+1,y,+1/2)
= (Ay) (X, T1)-(AX) (Y, +2) + (A)B
= (Ag)xof (Ax)50+ (Ax)B-‘rAg—Ax/z
= F(x,Y,) +Ay-Ax2
- (xo,go) is an endpoint and thus on the line, so
FlxoYo) =0
d, = Ay-Ax/2
- but Ax/2 may wot be integer!




Making It nteger

d, = A%Ax/z
© o, may not be integer
- 30, WwLLtLpLg b@ 21! (Ag and Ax are tntegers)

- this doesn't affect the sign of d, which is all
that matters

© We now use o,

- sod, = 2Ay-Ax
- this also means that Ag and A ¢ are twice as
big: Ag = 28y and A, ¢ = 2AY-2Ax

= 2:F (X T1 Yy, +1/2)

0 < wm < 1 Midpoint Line Algorithm

© compute 2Ax, .:2A5, and :2A5—.:2A)<

© lnitlalize (x,@) to the Lower leftmost polnt
and d = QAB»AX

- color pixel (,x,g)

. repeat.._

- Lnerement x

- if d > o, increment y and add
A e = 2Ay-2Ax to d

- otherwise, add Ag = 2Ay to d

- color pixel (,x,g)

Midpoint Line Summa y

- algorithm is tnteger § tneremental (for
speed)
- stmplifications
- one pixel per column (a hack to malke it
easter)
- only consider 0 < m <1 (other cases by
sgmmewg)
key observation: glven pixel colored in
column R, next pixel is either € or NE

- need a dectslon variable to use to make cholce

Midpoint Line Summary #2

- declston variable
- use sign (+, -, 0) to make cholee
- the sign of F(x,g) tells which side of the line
polnt (x,@) ls on
- determine what side of line midpoint is on
- Uf line Ls between midpoint and €, € Ls closer to
line L.e. choose € if F(x,,Y,.) < o0
* ditto for NE L.e. choose NE If F(x,,Y,) > 0
© making it integer § incremental
- use QF(x,lj) as declsion var tnstead of F(,x,g)
- don't recompute F(x,y) each thme - tnstend,
increment previous value bg some amount




