Responses of Retinal Rods to Single Photons

D.A. Baylor, T.D. Lamb, K.W. Yau

Romesh Kumbhani Visual Science (Psych 733-301) January 15, 2002

Introduction

Companion Paper to Baylor et.al. (1979)

Empirically described the general properties of membrane current of rod outer segments

Baylor et.al, The membrane current of a single rod outer segments. J. Physiology, **288**:589-611, 1979

Hypothesis:

The fluctuations in photocurrent during presentation of dim light arise from the quantal nature of light.

Methods Digital Current Counter Amp/Recorder Quantum Microscope Photometer Filtered FM Tape Light Recorder Source

Methods

- Suction Electrode Measured Membrane Current of a Single Rod Outer Segment
- Light at 520 nm Was Used
 - maximize rhodopsin isomerization
 - minimize metarhodopsin III isomerization (side product)
- Light at 580 nm Was Used as Control
- Signal Processing
 - Power Spectra
 - Amplitude of Response to Dim Flashes
 - Difference Method
 - Least Squares Method

Suction Electrode

- Characterization of Photocurrent to Various Steady Light Intensities and Durations
 - Number = Intensities (photons/(µm² s))
 - Bar = Period of Stimulus (seconds)
- Fluctuations Appear at Lower Intensities
- Fluctuations Disappear at Higher Intensities
- Similar to Previous Work which Suggests Fluctuations Are Due to Quantal Nature of Light.

(Fuortes & Yeandle, 1964)

- Fluctuations in the Response to Impulses of Light
- Three Distinct Amplitudes Were Observed from the Presentation of Impulse Stimuli
 - No response
 - 1 pA
 - 2+ pA
- Further Suggests a Quantal Nature of Photocurrent Production

- Histogram of 99 responses
- Bimodal Population Seen
- Figure 3a
 - 58/99 resulted in failure (0.5 pA cutoff)
- Figure 3b
 - Same cell at lower intensity
 - 44/99 resulted in failure (0.5 pA cutoff)
- Assuming Poisson-Distribution (p_k = e^{-m}m^k/k!), the Mean Number of Events per Trial = 0.53

- Amplitude Histograms of Dim Flash Responses from Four Cells
- One Third of Cells Failed to Show Obvious Quantization
- Due to Low Amplitude / High Variance System
- Line Fitting: Gaussian-Poisson Hybrid.

- □ Is This Caused by a Single or Multiple Isomerizations?
- Test if the Mean Number of Photoisomerizations is Proportional to Light Intensity.
 - Open Circles: Empirical Results;
 - Line: Theoretical assuming Single Isomerization Required.
 - Multiple Isomerization Curve Would be TOO Steep

 The Size and Shape of the Response to an Absorbed Photon Seems to Be Wavelength-Invariant

- Interaction of Quantal Events
 During Steady Illumination
- Power Spectrum of Figure 1 (0.068) Shown.
- The Curve Is the Expected Power for the Superposition of Quantal Events.
- Falloff Due to 15Hz 6-pole
 Low Pass Filter
- Dashed Line: Thermal Noise in the Leakage Resistance between the Pipette and Cell

Power Spectral Densities for Four Cells

- O: Dim Illumination
 - □ 0.2 photons/(µm²·s)
- A: Moderate Illumination
 - □ 5 photons/(µm²·s)
- Oright Illumination
 - □ 500 photons/(µm²·s)
- Bright Illumination
 Does Not Follow
 Predicted Curve;
 Adaptation

Conclusions

- Amplitude Histograms of Responses to Dim Flashes Showed Discrete Distribution; Suggests Quantized Nature.
- Variance of Fraction of Successes Consistent with Hypothesis that Each Quantal Electrical Event Resulted from a Single Photoisomerization.
- The Size and Shape of the Quantal Event was Wavelength-invariant.
- The Power Spectral Density of the Responses Matches that of Independently Occurring Quantal Events, But Breaks Down at Higher Light Intensities