Real-world illumination and the perception of surface reflectance properties

Roland W. Fleming Massachusetts Institute of Technology

Material Recognition

Perception of Material Properties

Spatially uniform: "Intrinsic properties"

Geometric cues: "Shape"

Transmission

Spatially varying: "Texture"

Reflection

Absorption "Darkness"

Lambertian "Lightness"

Specular "Gloss"

Photometric cues:

"Optics"

Refraction "Density"

Scatter "Translucency"

Surface Reflectance

- These spheres look different because they have different surface reflectance properties, e.g. *lightness* and *gloss*
- We are interested in how humans estimate surface reflectance

Confounding Effects of Illumination

- Identical materials can
 lead to very
 different
 images
- Different

 materials can
 lead to very
 similar images

Our Hypothesis

Humans exploit *statistical regularities of real-world illumination* in order to eliminate unlikely image interpretations

Eliminating unlikely interpretations

Blurry feature

2 interpretations:

- Sharp reflection, blurry world
- Blurry reflection, sharp world

But the world usually isn't blurry!

Therefore it is probably a blurry *reflection*

Real-world Illumination

Illumination (at a point in space) = spherical image that would be acquired by a camera that looks in every direction from that point

Photographically captured illumination maps (Debevec *et al.*, 2000)

Panoramic projection of illumination map

Illuminations from the real world have characteristic statistics

Some statistics that are well-conserved

- Properties based on raw luminance values
 - High dynamic range
 - Pixel histogram heavily skewed towards low intensities
- Quasi-local and Non-local properties
 - Nearby pixels are correlated in intensity (roughly 1/f amplitude spectrum)
 - Distributions of wavelet coefficients are highly kurtotic (i.e. significant wavelet coefficients are sparse)
 - Approximate scale invariance (i.e. distributions of wavelet coefficients are similar at different scales)
- Global and Non-stationary properties
 - Dominant direction of illumination
 - Presence of recognizable objects such objects and trees
 - Cardinal axes (due to ground plane and perpendicular structures erected thereupon).

Observations

- Subjects should be able to estimate surface reflectance reliably across real-world illuminations
- Subjects should be poor at estimating surface reflectance properties when their assumptions about the statistics of the illumination are infringed, *i.e.* under illuminations with atypical statistics, surface reflectance estimation should be poor.

Observations

• Context has little effect on surface reflectance estimation

METHOD Surface Reflectance Matching

Test

Match

The Phong/Ward Reflectance Model

Diffuse reflectance

Specular reflectance

Roughness

Parameters of Specular Reflection

- Specular Reflectance
 - matte to glossy
- Roughness
 - crisp to blurred
- Axes rescaled to form a psychophysically uniform space
 - (Pellacini et al. 2000)

Real-world Illuminations

Illuminations downloaded from: <u>http//graphics3.isi.edu/~debevec/Probes</u>

Beach

Building

Eucalyptus

Grace

Kitchen

St. Peter's

Uffizi

Match Illumination

Galileo

Artificial Illuminations

Single point source

Multiple point sources

Extended source

Gaussian White Noise

Gaussian Pink Noise

Subjects can match surface reflectance

Subject: **RF.** (110 observations) Illumination: "**St. Peter's**".

Specular reflectance

Subject: MS. (110 observations) Illumination: "Grace".

Specular reflectance

Subject: RA. (110 observations) Illumination: "Eucalyptus".

Specular reflectance

Subjects can match surface reflectance

Data pooled across all subjects and all real-world illuminations

Surface roughness

Specular reflectance

Real-world vs Artificial Illumination

Noise is unlike real-world illumination

"Uffizi"

White Noise

Specular contrast

Pink Noise

Specular contrast

Least accurate of all real-world illuminations

What are the relevant statistics?

Real

Extended

1/f Noise

Illuminations have skewed pixel histograms

Illumination histograms are important

Campus

Pink noise

Histograms aren't everything

Campus original

White noise with histogram of campus

Heeger-Bergen texture synthesis

Input texture

Synthesized texture

Taken from Pyramid-Based Texture Analysis/Synthesis

Treat illumination maps as if they are stochastic texture

Wavelet Statistics

Synthetic illuminations with same wavelet statistics as real-world illuminations

Beach

Building

Eucalyptus

Grace

Kitchen

St. Peter's

Uffizi

Summary and Conclusions

- Reflectance estimation under unknown illumination is hard because:
 - identical materials can lead to very different images and
 - different materials can lead to the identical images.
- Subjects can match reflectance properties reliably and accurately
 - across illuminations
 - in the absence of context
- Performance is better for real-world illuminations than for artificial illuminations with atypical statistics
- Subjects can exploit statistical regularities of real-world illumination to perform the task

Summary and Conclusions

- We now have some ideas about important properties of illuminations
 - Extended edges help
 - Dominant direction of illumination may be important
 - Power spectrum is insufficient alone
 - Heavily skewed pixel histogram
 - Wavelet statistics

Perception of Material Properties

Spatially uniform: "Intrinsic properties"

Geometric cues: "Shape"

Transmission

Spatially varying: "Texture"

Reflection

Absorption "Darkness"

Lambertian "Lightness"

Specular "Gloss"

Photometric cues:

"Optics"

Refraction "Density"

Scatter "Translucency"

Lambertian "Lightness"

Specular "Gloss" *Refraction* "Density"

Scatter "Translucency"

Refractive Index

R.I. = 1.8

R.I. = 1.2

Translucency

Rendered using photon mapping by Henrik Wann Jensen

Role of illumination statistics in the perception of shape

Real-world illumination

Synthetic illumination

"Texture" Trajectories

Thank you

What cues are subjects using?

- Photographic Negatives of original real-world illuminations
 - Similar low-level image statistics to originals
 - Incoherent/non-uniform percept of surface reflectance qualities

What cues are subjects using?

Specular contrast

Surface roughness

Illumination map